English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 25483694      Online Users : 336
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65018

    Title: 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究;The Development of Storm SurgeFast Calculation System and the Reconstruction of 1845 Yunlin Kouhu Event
    Authors: 蔡育霖;Tsai,Yu-Lin
    Contributors: 水文與海洋科學研究所
    Keywords: COMCOT;風暴潮速算系統;台灣風暴潮作業模式;1845年雲林口湖事件;COMCOT;Storm Surge Fast Calculation System;Taiwan Operational Storm Surge Model;1845 Yunlin Kouhu event
    Date: 2014-08-29
    Issue Date: 2014-10-15 14:38:26 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 過去數十年,許多學者利用數值模式進行風暴潮研究與速算系統之發展,但大部分模式仍有諸多限制,例如受限小區域之計算域,無法完整涵蓋颱風生命週期之風暴潮模擬,或者僅限於卡氏座標系統。因此,本研究以康乃爾大學所之開放原始碼(Open Source)多重網格海嘯模式COMCOT(Cornel Multi-grid Coupled of Tsunami Model)為基礎進行風暴潮模式之開發,並於理想條件下進行解析解之驗證。在氣象力導入部分,本研究耦合理想颱風模式Holland Model(1980)、CWB Model和大氣模式TWRF(Typhoon Weather Research and Forecasting),並且以2011年南瑪都颱風(Tyhpoon Nanmadol)和2013年蘇力颱風(Typhoon Soulik)為實際案例進行模式校驗,模擬結果和實測資料有良好之比對結果。
    本研究討論氣候變遷下與韋恩颱風相同路徑之強烈颱風事件,同時以2013年海燕颱風(Typhoon Haiyan)參數代入情境模擬,模擬結果顯示於雲林口湖地區最高有4.45公尺之暴潮偏差,若未來發生類似路徑之強烈颱風,於麥寮和梧棲等中部地區應嚴防海水倒灌之災害。
    ;Several storm surge models had been developed in the last decades for the purposes of research and early warning. However, some deficiencies limit the model application. For example, small computational domain makes simulating the complete life cycle impossible, not to mention adopting the Cartesian coordinate system.
    In this study, the open-source code, COMOCOT (Cornel Multi-grid Coupled of Tsunami Model), was chosen for developing the storm surge model, and validated with analytic solutions for the meteorological forcing terms. Parametric model, such as Holland model (1980) and CWB model, and TWRF Model (Typhoon Weather Research and Forecasting) were coupled into the code. The 2011 Typhoon Nanmadol and 2013 Typhoon Soulik events were chosen for model validation. The result comparison with the observation data was in the good agreement.
    After the model development and validation, we further applied this model to the case of 1845 Kouhu storm surge event. In that event, nine villages were destroyed by a disastrous flood, and more than 3,000 inhabitants were killed. It was the most serious storm surge event in Taiwan. In this study, efforts were made for reconstructing this storm surge. According to the modern historical records, the 1986 Typhoon Wayne was the only one case that effected Kouhu significantly and chosen as the reference case. The simulation results showed that the surge deviation in Yunlin Kouhu was highly sensitive to the typhoon route if the typhoon lands at the western coast of Taiwan.
    Considering the global climate change, the meteorological parameters of the 2013 Typhoon Haiyan and the route of 1986 Typhoon Wayne were adopted. The simulation results showed that the 4.45 m surge deviation was observed in Yunlin Kouhu. Some places in middle Taiwan, such as Wuchi and Mailiao, were under the threat of inland flooding.
    Appears in Collections:[水文與海洋科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明