English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23028613      Online Users : 422
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65245

    Title: 拼貼式伽瑪相機之訊號讀出方法表現分析 與針孔穿透模型建立;Performance Analysis of Signal Readout Methods for Tiled Gamma Cameras and Building of Pinhole Penetration Models
    Authors: 鄭彥仁;Zheng,Yen-ren
    Contributors: 光電科學與工程學系
    Keywords: 單光子放射電腦斷層掃描;拼貼式伽瑪相機;針孔;穿隧
    Date: 2014-08-25
    Issue Date: 2014-10-15 14:44:57 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究針對微型單光子放射電腦斷層掃描系統,完成正向投影之快速針孔穿隧計算以及拼貼式伽瑪相機之訊號讀出方法表現分析。
    ;In this study, a speedy forward projection model is built up for micro-SPECT systems to perform the pinhole penetration calculations. The performance of the signal readout methods for tiled gamma cameras are also analyzed through simulations.
    The pinhole penetrations of knife-edge and kneel-edge pinholes are calculated by ray tracing. The model is straightforward, avoids the approximate error of Taylor series expansion, and has the functions of pinhole displacement and rotation. In addition, the mean detector response functions (MDRFs) of tiled gamma cameras are generated by the SCOUT simulation tool, including the outputs of 1616 individual anodes and 1616 row/column signals. Both the multivariate normal model and Poisson model are employed as the signal probability models. The resolution performance of the detectors with different signal readout methods are judged by the Fisher information matrix and Cramer-Rao lower bound based on the maximum likelihood principle.
    According to the simulations results, the resolution with the multivariate normal model is better than that with the Poisson model. The reason is that the multivariate normal model accounts for the signal correlations among the anodes and hence better represents the signal outputs. Moreover, using the signal outputs of all anodes keeps more information than using just the row/column signal outputs, and hence yields better spatial resolution. In conclusion, utilizing the multivariate normal model built with the signal outputs of all anodes would attain the best spatial resolution.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明