English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65275/65275 (100%) Visitors : 20908680      Online Users : 261
 Scope All of NCUIR 理學院    生物物理研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 National Central University (Taiwan) Institutional Repository > 理學院 > 生物物理研究所  > 博碩士論文 >  Item 987654321/6547

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/6547`

 Title: 兩板間黏著叢集的強度;The strength of an adhesion cluster between two plates Authors: 湯智超;Chih-Chao Tang Contributors: 生物物理研究所 Keywords: 叢集;黏著;強度;cluster;adhesion Date: 2007-07-03 Issue Date: 2009-09-22 10:21:37 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 我們提出了一個理論模型來描述配體-受體叢集的生命期 T( f , Nt )與叢集大小Nt、外力F 的關係，這裡f = F/Nt 為每 一配體-受體對所受之力。此叢集是由Nt 個平行的配體受體 對所組成。由反應速率方程式我們找到一個叢集的特徵力 fc ，我們由不同外力下的蒙地卡羅模擬發現(1)當f >fc 時, 叢集生命期與叢集大小無關。這是由於在反應速率方程式 中，鍵結數目在叢集中所佔比例的衰變與叢集大小無關，而 與f 有關。(2)當f =fc 時，生命期與叢集大小有冪次關係 lnT~lnNt。為了解釋此結果我們引入等效自由能G，則一叢 集的斷裂過程可以用一假想粒子在位能G 下的運動來描 述。在f =fc 時，G 有個反曲點，且叢集生命期大多都花在反 曲點附近的區域上，由標度分析可得lnT~lnNt。(3)當f fc, T is independent of Nt. This can be explained by the rate equation which predicts that the fraction of connected ligand-receptor pairs nb(t) depends on f, but not on Nt. (ii)When f = fc, lnT(Nt, f) ∼ lnNt. To explain the result we construct the effective free energy G and treat the force pulling process as a particle moving under G in Nb space. G(f = fc) has a flat region where the particle spends most of its lifetime to cross it. By estimating the width of the flat region with dimensional analysis, we find lnT(Nt, f) ∼ lnNt. (iii) When f < fc regime, lnT(Nt, f) ∼ Nt because G(f < fc) has a barrier with barrier height ∼ Nt and lifetime T comes from the barrier crossing time of the particle, as a result lnT(Nt, f) ∼ Nt. Finally we show that the above three relations exist as long as the rebinding and unbinding rates are functions of f and nb. Appears in Collections: [生物物理研究所 ] 博碩士論文

Files in This Item:

File SizeFormat
0KbUnknown825View/Open