English  |  正體中文  |  简体中文  |  Items with full text/Total items : 72880/72880 (100%)
Visitors : 23048001      Online Users : 422
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65475

    Title: 零過多與過離散個數資料的分析法
    Authors: 劉允宸;LIU,YUN-CHEN
    Contributors: 統計研究所
    Keywords: 零過多;過離散的個數資料;零過多廣義卜瓦松分配;零過多負二項分配;強韌概似函數;zero-inflated;over-dispersion;zero-inflated generalized Poisson distribution;zero-inflated negative binomial distribution;robust likelihood function
    Date: 2014-07-02
    Issue Date: 2014-10-15 15:32:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 當分析零過多且具過離散的個數資料時,許多文獻建議可使用零過多廣義卜瓦松 (ZIGP) 模型或零過多負二項 (ZINB) 模型。
    本文研究指出ZIGP 和ZINB兩種模型的參數估計量均不具一致性,故建議以Royall和Tsou (2003) 強韌概似函數方法建立的強韌常態模型配適零過多且具過離散的個數資料。

    ;Zero-inflated generalized Poisson distribution and zero inflated negative binomial distribution are models proposed for analyzing over-dispersed count data with excess zeros. We illustrate that inferences derived from these models are sensitive to model misspecification.
    Alternatively, we show that one can fix the normal model to accommodate data with the features of interest. The adjusted normal likelihood is asymptotically legitimate so long as the first two moments are correctly specified and that the 3rd and the 4th moments of the true distributions exist.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明