English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41635799      線上人數 : 1166
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/65495


    題名: 伽瑪隨機過程之階段應力加速衰退試驗之貝氏序列可靠度分析;A Sequential Bayesian Reliability Analysis under Gamma Step-Stress Accelerated Degradation Process
    作者: 陳芊卉;Chen,Cian-huei
    貢獻者: 統計研究所
    關鍵詞: 階段應力加速衰退試驗;伽瑪隨機過程;Arrhenius 模型;馬可夫鏈蒙地卡羅方法;貝氏方法;預測理論;Sstep-stress accelerated degradation test;gamma process;Markov chain Monte Carlo;Bayesian approach;predictive inference
    日期: 2014-07-22
    上傳時間: 2014-10-15 15:33:13 (UTC+8)
    出版者: 國立中央大學
    摘要: 本文考慮伽瑪隨機過程之階段應力加速衰退試驗(SSADT)之貝氏可靠度分析。在加速因子為溫度之Arrhenius模型下,以主觀先驗分佈經由馬可夫鏈蒙地卡羅方法(MCMC) 得在常溫下產品壽命及可靠度之貝氏推論。另一方面,藉由在類似產品置於正常環境應力水準下之序列衰退試驗中,更新先驗分佈之超參數,以預測產品失效時間之分佈,同時決定測試時間,並以模擬資料驗
    證所提方法的可行性和準確性以及貝氏方法之穩健性。;Degradation analysis is more efficient than the conventional life tests in drawing reliability assessment for high quality products. This thesis aims on the Bayesian approach to the degradation test when the degradation data of different products are collected under higher than normal stress levels via independent gamma processes. Reliability inference of the population under normal condition will be made based on the posterior distribution of the underlying parameters with the aid of Markov chain Monte Carlo method. Further sequentially predictive inference on individual reliability under normal condition is also proposed. Simulation study is presented to show the
    appropriateness of the proposed methods, and the robustness of the prior distribution.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML464檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明