本論文主要在探討K頻段寬頻、低雜訊之低雜訊放大器設計方法,文中提出了三個實現寬頻、低功耗特性的電路設計。電路採用tsmc 0.18-μm CMOS及tsmc 90-nm CMOS兩種製程。 第一個電路設計為一個三級共源極串聯之寬頻低功耗低雜訊放大器,欲設計ㄧ個寬頻之低雜訊放大器,本電路將三級電晶體增益分別匹配在不同的中心頻率下,預期其整體頻寬能到寬頻設計,由於此電路操作於高頻頻率,電晶體內部寄生效應轉趨明顯,因此電路中使用多個共振電路消除寄生效應,進而達到提升增益、降低雜訊之效果;本電路使用tsmc 0.18-μm CMOS製程設計,電路量測結果在24.3 GHz有最大增益7.78 dB,其3-dB頻寬從18 - 28.6 GHz (共10.6 GHz),量測最小雜訊為5.3 dB,線性度量測結果P1dB為-10 dBm、IIP3為-1 dBm,總功率消耗為7.07 mW,實際晶片大小(含下針測試pads)為0.89 × 0.83 mm2。 第二個低雜訊放大器電路為共源極串聯疊接架構,此電路設計重點為將第二級電路使用疊接架構,優點在於疊接架構可提供比共源極電路更大的增益,且由於電路架構關係,增加電路之隔離度,由於高頻電容寄生效應會造成雜訊增加,因此在疊接架構兩顆電晶體間串連一電感來降低雜訊。此電路量測最大增益為8.6 dB,其3-dB頻寬從19.4 - 27.8 GHz(共8.4 GHz),量測最小雜訊為6.8 dB。線性度量測結果P1dB為-10.5 dBm、IIP3為1.5 dB,總消耗功率為10.5 mW,晶片大小為0.89 × 0.83 mm2。 最後一個電路為使用tsmc 90-nm CMOS製程設計之變壓器回授既電流再生之寬頻低功耗低雜訊放大器,本次電路為單級疊接架構,將輸入匹配使用一變壓器回授,其優點在於可提升電路增益,為了使得電路操作在低功耗條件下,將電流再生技術加入疊接架構中,達到提高增益、降低功耗之效果。此電路量測結果在23 GHz有11.4 dB的增益,其3-dB頻寬從17.2 - 30 GHz(共12.8 GHz),量測雜訊最小為3.65 dB,而在頻寬內雜訊變化為3.65 - 4.18 dB。線性度量測結果P1dB為-17.5 dBm、IIP3為-6.1 dBm,電路總消耗功率為6.11 mW,晶片面積為0.95 × 0.6 mm2。;The primary target of this thesis is to design wideband and low power K-band low noise amplifier (LNA). There are three different circuit designs which are design in tsmc 0.18-μm CMOS and tsmc 90-nm CMOS processes. The first LNA circuit is a wideband, low power LNA using three stages common-source topology. In order to obtain a wideband response, the stagger tuning technique is utilized. At high frequencies, since the parasitic capacitances degrade the gain and contribute considerable noise, series-peaking inductors are used to resonate the parasitic capacitances. The proposed LNA achieved a measured maximum gain of 7.78 dB at 24.3 GHz. The 3-dB bandwidth is 10.6 GHz from 18 - 28.6 GHz. The minimum noise figure is 5.3 dB. The input 1-dB gain compression point (P1dB) is -10 dBm, and the third-order intercept point (IIP3) is -1 dBm. Total power consumption is 7.07 mW, and the chip size including testing pads is 0.89 × 0.83 mm2. The second circuit is a two-stage wideband low noise amplifier. The first stage of the LNA adopted common-source topology with inductive source-degeneration to achieve both impedance and noise matching simultaneously. Meanwhile, the second stage used cascode topology. This topology can mitigate the Miller effects and improves the isolation between input/output ports. However, at high frequency, the parasitic capacitances in cascode topology also degrade the gain and contribute considerable noise. Accordingly, a series inductor is utilized to resonate the effect of the parasitic capacitance. Based on this design consideration, the LNA shows a gain of 8.6 dB with 10.5 mW power consumption, and a minimum noise figure of 6.8 dB. The P1dB is -10.5 dBm, and the IIP3 is 1.5 dBm. Total chip size including pads is 0.89 × 0.83 mm2. The final LNA circuit is a wideband, low power low noise amplifier with transformer feedback input matching and the current-reused topology in 90-nm CMOS process. The current-reused technique is employed to reduce the power consumption. The input matching adopts a gate-source feedback transformer to achieve impedance and noise matching. The proposed LNA achieves a gain of 11.4 dB over a 3-dB bandwidth from 17 to 30 GHz and a minimum noise figure of 3.65 dB. The measured P1dB is -17.5 dBm and the IIP3 is -6.1 dBm at 24 GHz. The LNA consume only 6.11 mW from a 1.3-V supply. The chip size is 0.95 × 0.6 mm2.