中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/65727
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41652584      Online Users : 1698
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65727


    Title: Mining Conflict Patterns
    Authors: 江昱佳;Chiang,Yu-chia
    Contributors: 資訊管理學系
    Keywords: 資料挖掘;群體決策;爭議性排序;Data mining;Group decision making;Partial ranking list;Conflict patterns
    Date: 2014-08-08
    Issue Date: 2014-10-15 17:08:59 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,群體排名的問題已經變得越來越重要。然而,在大部份群體排名的應用中,皆著重於如何從所有使用者的排名資料,找到最多人所擁有共識的排序;而較少有研究是著重在找出那些持有不同於主流看法的排序。因此,本論文欲針對此問題進行研究。在本篇論文中,若針對同一個排序,其贊成此排序的人數若與反對此排序的人數相當,我們即將此排序定義為爭議性排序。藉由找到這些爭議性排序,決策者可以瞭解為何會有不同於主流意見的衝突或矛盾的情形發生,甚至可以更進一步瞭解其有哪些支持者與反對者。藉由我們所挖掘到的爭議性排序,決策者可以嘗試與這些持有不同意見的人做溝通,或是試著解決他們的疑惑,讓整個公司可以更和諧,運作得更為順利。
    在本篇論文中,我們會提出一個演算法幫助我們從使用者的意見中,找到具有爭議性的排序。我們也會使用人工資料集和真實資料做實際的實驗測試。而我們實驗的結果指出,我們所提出的方法是一個效率高,並且能夠定義爭議性意見、並應用在實際的決策。
    ;In recent years, the group ranking problem has become an important study. In most of group ranking problems, the focuses lie on finding the consensuses upon which most people agree. No previous researches have paid attention on finding conflict opinions, called conflict patterns in this work, among decision makers. In this work, we define conflict patterns as those orderings of alternatives which have roughly the same numbers of pros and cons. The conflict patterns can reveal the ranking of what alternatives are the most controversial among decision makers, and who are supporters and opponents. With the information of conflict patterns, we can communicate with those people with different opinions and try to resolve the differences.
    In our work, an algorithm, MCP, is developed to find these conflict patterns from users’ partial ranking data. Extensive experiments are carried out using synthetic data sets and real data. The results indicate that the proposed method is computationally efficient, and can effectively identify conflict patterns among all users.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML597View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明