English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23208113      Online Users : 430
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65730

    Title: 淘寶網女裝賣家和產品分類之混合式預測系統;A Hybrid Prediction System for the Seller and the Product Category of Women’s Apparel at Taobao
    Authors: 簡政誼;Chien,Chengy-yi
    Contributors: 資訊管理學系
    Keywords: 顧客行為預測;序列樣式探勘;羅吉斯迴歸;混合預測系統;顧客購買行為;RFM model;Sequential pattern mining;Logistic regression;Hybrid prediction system;Customer purchase behavior
    Date: 2014-08-20
    Issue Date: 2014-10-15 17:09:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,電子商務拍賣平台已成眾多賣家選擇開店的網路平台。隨者電子商務規模的擴大,競爭也更為激烈。若能預測顧客的購買行為,包括買什麼商品和跟誰買,賣家可以成功地留住顧客,並以最具成本效益的方式增加營收。過去研究使用羅吉斯迴歸(LR)等分類模型很難預測顧客沒有購買過的商品分類;結合協同過濾和序列樣式探勘(SPM)等技術找出相似顧客可能喜歡的商品,但容易有資料稀疏性的問題。本研究提出一個RFM資料為基礎的混合(Hybrid)預測系統,結合LR方法所建立的商品分類預測模型,和SPM所找出大部分顧客的購買樣式,藉此預測顧客未來可能會購買的賣家和其商品分類。
    ;In recent years, more and more sellers expand their businesses through E-commerce auction platform. With the ever-growing of E-commerce, it becomes more competitive to do business on Internet. If the customer’s purchase behavior—what to buy and from whom—can be predicted, the seller would be able to retain its customers and increase its revenue in a more cost-effective way. In the literatures we surveyed, classification models like Logistic regression (LR) was hardly used to predict the product category from which a consumer has not yet purchased before. Recommendation system could find out the product preferred by similar customers by combining collaborative filtering and sequential pattern mining (SPM), but it would suffer from the problem of data sparsity. We propose a RFM-based hybrid prediction system by combining the LR model for prediction of product category, and the purchase patterns of most customers using SPM, to establish the probability of purchasing from a particular seller and a particular product category.

    We target at the largest cross-strait auction platform and the most popular product category, women’s apparel at “Taobao” platform, and has collected the trading records between Jan. 1, 2013 and April 1, 2013 using web mining technology. Firstly, we identify the parameters used in RFM-SPM, and then determine the most appropriate weight used in the Hybrid system. We then use precision, recall, and F1 measures to compare the three prediction systems, RFM-LR, RFM-SPM, and the Hybrid. It is shown that the Hybrid exhibits the highest performance in all three measures in predicting the seller (0.75) and the seller×product category (0.6) among the three prediction systems, while those of RFM-SPM are the lowest. In predicting the purchase behavior of customer clusters, the Hybrid again shows the best performance in terms of F1 measure, which is 0.75~0.82 for low F/high M cluster, and 0.9 for low F/low M cluster.
    Appears in Collections:[資訊管理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明