English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23029138      Online Users : 448
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65733

    Title: 以擴充RFM模型探討海峽兩岸消費者在網路購物之再購行為研究;An Augmented RFM Model of the Cross-Strait Consumers’ Repurchase Behavior in Online Shopping
    Authors: 陳慧玲;Chen,Hui-ling
    Contributors: 資訊管理學系
    Keywords: 再購行為;賣家再購;平台再購;RFM模型;網路購物;Repurchase Behavior;Seller Repurchase;Platform Repurchase;RFM Model;Online Shopping
    Date: 2014-08-28
    Issue Date: 2014-10-15 17:09:06 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 網路購物成長快速早已成為電子商務業者的兵家必爭之地,了解線上消費者的購物行為成為電子商務業者獲利的必要功課。由於增加顧客留住率可以提高獲利,加上開發一位新顧客的成本遠高於留住一位舊顧客的成本,因此若能掌握消費者向同一個賣家再度購買的可能性以及在同一購物平台再購的機率均有助於業者了解消費者行為,進而掌握有價值的顧客,方便推動目標行銷或精準行銷。本研究是以中國最大的電子商務淘寶網以及台灣前兩大之Yahoo!奇摩拍賣及露天拍賣平台為對象,針對網路購物成交最熱絡的商品類別─女裝,進行兩岸電子商務消費者再購行為的比較分析。研究目的在藉由女裝商品的真實交易資料,建構以RFM模型為基礎的賣家再購和平台再購預測模型,並分析兩岸電子商務中消費者再購行為的異同。
    ;The fast growing online shopping has turned into a battlefield for many e-commerce (EC) businesses. They must understand their customers’ purchase behavior in order to make a profit. Given the fact that the increase in customer’s retention rate can lead to higher profit and the cost of acquiring a new customer is higher than that of retention of an existing customer, the EC businesses can understand their customers’ behavior and assess customers’ value in order to initiate target marketing or precision marketing by capturing the probability of revisiting the same seller by a customer and repurchase at the same e-marketplace. Taking China’s largest EC platform—Taobao, and Taiwan’s top two platforms—Yahoo Taiwan Auction and Ruten Taiwan Auction as our research targets, and focusing on the most popular trading categories—women’s apparel, we conduct a comparative analysis on the cross-strait EC consumers’ repurchase behavior. The purpose of this research is to establish a RFM-based prediction model of consumers’ seller repurchase and platform repurchase by analyzing the actual transaction data of women’s apparel and to compare the cross-strait EC consumers’ repurchase behavior.
    The repurchase behavior prediction model consists of five predictors, including the recency, the freguency, the total amount, the average amount, and the consumer’s last rating. The research findings show that in terms of repurchase rate, Yahoo! is the highest, followed by Ruten, and Taobao is the lowest. Interestingly, the consumer’s seller switching rate in descending order is also Yahoo!, Ruten, and Taobao, which indicates the consumers at Yahoo! exhibit multi-loyalty behavior with both high repurchase rate and high seller switching rate. The Logistic regression shows that all the predictors in the seller repurchase and the platform repurchase prediction model of Yahoo!, Ruten, and Taobao are statistically significant. We also use cluster analysis to identify the characteristics of the most valuable customers at the three different platforms. All of our findings are based on actual transaction data of online shopping web sites, the repurchase behavior of online consumers and its prediction model can be used by EC businesses and platform businesses for consumer relationship management and merchandise sales and marketing.
    Appears in Collections:[資訊管理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明