English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22322704      Online Users : 424
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/67644


    Title: 3×3矩陣乘積之數值域及數值域半徑;NUMERICAL RANGES AND NUMERICAL RADII OF PRODUCTS OF 3×3 MATRICES
    Authors: 林肯甫;Lin,Ken-fu
    Contributors: 數學系
    Keywords: 數值域;數值域半徑;張量積;壓縮矩陣;numerical range;numerical radius;tensor product;contraction
    Date: 2015-06-29
    Issue Date: 2015-07-31 00:47:20 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在本篇論文中,對任意3×3的複數矩陣A和B,我們給出了充分且必要的條件對於AB矩陣乘積的數值域和BA矩陣乘積的數值域相等時。此外,去研究當A和A2的數值域半徑為1且A3的數值域半徑小於1時,A會有什麼樣的矩陣結構。以及最後,我們給出了充分且必要的條件對於當A為壓縮矩陣其特徵值長度皆小於1且A的範數為1,A與B張量積的數值域半徑等於A的範數與B的數值域半徑乘積時。;In this thesis, for any two 3-by-3 complex matrices A and B, we show that the necessary and suffi cient conditions for the equality W(AB) = W(BA) to hold, where W( ) denotes the numerical range of a matrix, a nd the structure of A when w(A) =w (A2) = 1 and w (A3) < 1, where w( ) denotes the numerical radius of a matrix, and obtain the necessary and suffi cient condition for the equality w(A B) = kAkw(B)to hold when A is a completely nonunitary contraction with kAk = 1, where k k
    denotes the usual operator norm of a matrix.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML364View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明