English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75533/75533 (100%)
Visitors : 27407089      Online Users : 284
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68054

    Title: 結合水文及數值模式應用於河川水位預報—以高屏溪為例;Combining hydrological and numerical models applied to water stage forecast- A Case Study in Gaoping river
    Authors: 洪逸鈞;Hung,I-chun
    Contributors: 土木工程學系
    Keywords: 水文模式;定量降雨;系集預報
    Date: 2015-08-31
    Issue Date: 2015-09-23 10:19:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 由於極端氣候及颱風事件所造成之降雨不確定性,如何建立適當的洪水預警機制是本文所探討的問題。因應2009莫拉克風災以及2010凡那比颱風於台灣本島南部帶來嚴重的豪雨,致使高屏地區飽受水患之苦,故本研究選定高屏溪流域進行水文模擬及河川水位的討論。
    ;This study aims to explore how to establish appropriate flood forecast in response to rainfall uncertainty caused by extreme weather and typhoons. Considering Typhoon Morakot (2009) and Typhoon Fanapi (2010) lead to the severe rainfall and flood in southern Taiwan, this study selected Gaoping River Basin as study site.
    For research purpose, this study divided Gaoping River basin into four blocks, including upstream region: Laonong river, QiShan river and Ailiao river, and downstream region: Gaoping river. We used hydrological model to calculate surface runoff on upstream area and applied numerical model for channel to downstream calculations.
    Past typhoon events were examined to calibrate model parameters in this study, while rainfall stations data for each river basin was used as main parameter to validate modeling performance. Lastly, the model was joined with quantitative precipitation and ensemble forecast to simulate different water stage.
    The research result indicated that peak error values are less than 4% when setups for flash flood in this study were used. The peak time of Usagi event presents a relatively minor difference from the estimated peack time: 2 hours in advance, and the simulation time for Wanda Bridge downstream water level stations are in good agreement with actual event. Additionally, as the simulated water stage result based on quantitative precipitation data gets closer to simulated water stage result based on actual peak value event, the peak value appears to be more accurate.
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明