本研究探討在多機台間不具有儲存空間下極小化總延遲時間之流程式生產排程問題。在一般製造過程中,兩相鄰的機台間可以有空間存放已經做完的半成品,而在此研究中,兩相鄰機台間不能有儲存空間。 本文針對不具有儲存空間的多機台排程問題發展出分支界限法以求得最小的總延遲時間,該演算法的下限值是在考慮不具儲存空間下計算出來的,此下限值可以幫助我們決定分支的方向,而初始上限值則是使用NEH-EDD啟發式演算法而得,除了兩個上下限值以外,我們還提出了三個定理來決定未排工作在已選定排程外的位置以及一個準則來比較兩個排程在其目標值與工作順序上的優劣。在實驗分析中,將本研究的演算法與窮舉的分支界限演算法比較以驗證本研究演算法的正確性,接下來比較Ronconi and Armentano(2001)的結果,我們演算法平均產生的節點數比Ronconi and Armentano(2001)這篇論文來的有效率。 ;This research considers the flow shop scheduling problem with blocking to minimize total tardiness where this problem appears in serial manufacturing processes. There are no buffers between adjacent machines in these processes and a completed job has to stay on a machine until the next downstream machine is available. We propose a lower bound which considers the blocking constraint and several propositions to determine the position of the next unscheduled job and a dominance criterion for comparing two selected sequences. The NEH-EDD heuristic provides a feasible solution which is used as an initial upper bound in our branch-and-bound algorithm. Our algorithm is validated by comparing with an enumeration method and its efficiency is evaluated via several instances. The results show that the average numbers of nodes generated in our algorithm are fewer than algorithm of Ronconi and Armentano(2001).