English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23295288      Online Users : 361
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68233

    Title: 團鏈共聚物自組裝、石墨化及金屬碳合金材料之製備;Electrochemically Active N-doped and N/Fe-doped Graphite with Well Defined Morphology and Dimension Fabricated from Pyrolyzed PS-P2VP Block Copolymer Nanostructures
    Authors: 黃偉華;Huang,Wei-hua
    Contributors: 化學工程與材料工程學系
    Keywords: 雙團鏈共聚物;碳化;氧氣還原反應;石墨;溶劑退火;di-block copolymer;carbonization;oxygen reduction reaction;graphite;solvent annealing
    Date: 2015-08-26
    Issue Date: 2015-09-23 11:08:13 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究分成兩個部分。第一個部分是以雙團鏈共聚物之自組裝奈米結構,製備具有氮摻雜之奈米碳材,第二部分則是製備含鐵/氮摻雜的奈米碳球。
    第二部分是把鐵元素加入碳材當中,製備出含有氮/鐵摻雜的奈米碳球。由單純嵌段共聚物模板燒製的碳材,因為受限於高分子本身的熱裂解溫度,因此無法製備出具有較高石墨化程度的碳材料。進一步發現加入適當比例的含鐵化合物,可以大幅增加高分子在熱燒結之後的殘餘量,因此嘗試以更高的溫度對高分子進行熱燒結,最終得到石墨化程度較高的碳材。由於在極高的溫度下燒結有助於四級氮(Quaternary nitrogen)生成,而四級氮的含量與氧還原催化反應的效能呈正相關,因此加入含鐵化合物並在極高溫度下燒結的碳材除了石墨化程度增加,同時也能大幅的提高ORR的效果。進一步探討鐵的加入量對氧還原反應的影響,也比較在何種燒製條件下可以得到擁有最佳的催化特性的碳材。
    ;The research is divided as two sections. The first section is using block copolymer (BCP) self-assembled nanostructures to fabricate nitrogen-rich carbon nanomaterials, the second section is fabricating Fe/N doped carbonaceous nanomaterials.
    In the first section, solvent annealing process was used to fabricate different BCP templates, such as perpendicular-oriented cylinders, lamellae, and parallel-oriented cylinders. The films were further exposed into UV-light to stabilize nanodomains; this process would increase the yield of solid carbonaceous materials during ptrolysis at elevated temperatures. As a result, the pyrolyzed graphitic nanostructures remained the original morphology of their pristine nanodomains. The pyrolysis of the nitrogen-containing block produced nitrogen-rich carbonaceous materials. The presence of nitrogen would cause an uneven distribution of electron density, giving rise to electrocatalytic activities of oxygen reduction reaction (ORR).
    In the second section, Fe/N doped carbonaceous materials were fabricated. The graphitic nanostructures fabricated from thermal pyrolysis of BCP templates have low degrees of graphitization since the pyrolysis could only be achieved at a temperature close to the decomposition temperatures of the constituted blocks. An incorporation of iron-containing compounds of various fractions into the BCP template can increase the amounts of residual of solid carbonaceous materials even at much higher pyrolysis temperatures. Thus a carbonaceous material with a high degree of crystallinity can be obtained. High-temperature pyrolysis not only increased the degree of crystallinity, but also improved the amount of graphitic nitrogen. The portions of graphitic nitrogen are correlated with the performance of ORR so that the electrocatalytic activity of such Fe/N containing carbonaceous materials can be increased. Relationships between the fraction of iron-containing species and the ORR performance were found and more details were discussed in the following.
    Appears in Collections:[化學工程與材料工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明