場效應電晶體為一種利用電場加以控制半導體材料中,其材料的形貌及某一特定通道的電荷載體的傳導率。在此篇研究中,我們採用改良式的哈莫法,將石墨粉經由過錳酸鉀與硫酸共同作用,劇烈氧化之後合成出氧化石墨烯,而合成出來的氧化石墨烯在水中與乙醇溶液中具有良好的分散相。接著,將合成出來的氧化石墨烯藉由紫外光的照射進行還原,此一步驟並沒有光觸媒的參與,可以得到還原的氧化石墨烯。我們對氧化石墨烯及還原過後的氧化石墨烯進行性質鑑定,包含原子力顯微鏡討論表面形貌學、拉曼光譜鑑定鍵結與表面增強拉曼效應、紫外-可見光吸收譜圖、光電子能譜圖等等。我們在研究中亦利用了團鏈共聚物的自組裝特性,以微胞結構當作模板,製備出奈米粒子陣列,如氧化鋅,能夠扮演光觸媒的角色,用以形成孔洞狀的還原的氧化石墨烯材料。最後我們可以得到具有孔洞狀的還原的氧化石墨烯結構,稱為graphene-based nanomesh(GNM)。我們比較了不同種類的電晶體表現,一種為沒有光觸媒,直接還原的還原氧化石墨烯所製備的電晶體;另一種則是與氧化鋅陣列作用形成的還原氧化石墨烯的電晶體。這簡單快速的方法能夠有效地簡化現今的製程,並具有成本較低、低污染性的優點。;Field-effect transistor (FET) is a transistor that uses an electric field to control the shape and hence the conductivity of a channel of one type of charge carrier in a semiconductor material. In this work, graphene oxide (GO) was synthesized from oxidation graphite powders according to modified Hummers method. As a result, GO can well dispersed in H2O or ethanol. Next graphene oxide was subjected to photoreduction via direct UV irradiation without photocatalyst. Reduced graphene oxide (rGO) was obtained. Then block copolymer micelle lithography was applied to fabricate nano-particulate arrays such as ZnO, which play an role as a photocatalyst for the formation of nanoporous rGO materials. Finally we can fabricate the “graphene-based nanomesh(GNM)” FETs. We compare two types of FETs, one is made of rGO by UV irradiation in the absence of ZnO photocatalyst, and the other is made of rGO atop arrays of ZnO. This facile fabrication of rGO field-effect transistors can simplify the current procedures.