;In recent years, low-cost rechargeable batteries become more crucial for the development and application of large-scale energy storage system. Up to now, Li-ion battery is one of major energy storage devices, but it’s limited to the cost and resources. Recently, Na-ion battery has become one of the most promising energy storage system and considered to be a candidate device for the next generation . In this study, Sb2S3 nanorods were solvothermally synthesized with/without glucose (carbon coating) and graphene as anode for sodium-ion battery. At a constant current of 20 mAg-1, pure Sb2S3 nanorods as anode exhibited a reversible capacity of 439 mAhg-1. On the other hand, the reversible capacity increased to 621 mAhg-1 while Sb2S3 nanorods as anode with glucose and graphene addition. Further studies on Ionic Liquid Electrolytes at different temperature for sodium-ion batteries, While at room temperature and high temperature , At a constant current of 100 mAg-1 after 50 cycles, show cycle retention are 55% and 62% .Finally, studies on different binder about PVDF and Na CMC, At a constant current of 100 mAg-1 after 30 cycles, show cycle retention are 57% and 70%. In summary, as compare to pure Sb2S3, the capacity and cycle-life can be improved in the glucose-coated Sb2S3 which decorated on graphene as anode for Na-ion battery.Ionic Liquid Electrolytes can provide higher thermal stability than Organic Liquid Electrolytes and use binder with Na CMC can decrease volume change ,the reason is attribute to good elasticity.