投資人對於未來有很多觀點,所以許多學者在Black-Scholes 模型下利用選擇權資料去估計波動度。本文提供了一個在Black-Scholes 模型下估計波動度的方法。在我們的方法中,我們考慮了一個在Black-Scholes 模型下利用所有選擇權資料以及廣義線性回歸去估計波動度。之後,用估計出來的波動度去計算Greeks 並且對不同履約價的TAIEX 選擇權做動態避險。實證分析的結果顯示,我們所使用的避險方法優於其他的指標,也就是說,利用隱含波動或是歷史log return 的標準差。;Options contain many investor’s future views toward future, thus many scholars estimate the volatility in Black-Scholes model by using option data. In this thesis, we provide a method to estimate volatility under Black-Scholes model. In our method, we consider a generalized linear regression to estimate the volatility under the Black-Scholes model by using all options. Afterwards, we use the estimated volatility to calculate Greeks and do dynamic hedging for TAIEX options at different strike price. The empirical results show that hedging using this method outperforms other benchmark methods, i.e., using implied volatilities or using standard deviations of historical log returns.