English  |  正體中文  |  简体中文  |  Items with full text/Total items : 72271/72271 (100%)
Visitors : 23085786      Online Users : 666
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/68972

    Title: 使用前額穩態視覺誘發電位之腦波人機介面研究;A Frontal SSVEP-Based Brain Computer Interface
    Authors: 黃昱禎;Huang,Yu-Chen
    Contributors: 電機工程學系
    Keywords: 穩態視覺誘發電位;大腦人機介面;前額葉;Steady-state Visual Evoked Potential(SSVEP);Brain Computer Interface (BCI);Frontal cortex
    Date: 2015-08-21
    Issue Date: 2015-09-23 14:47:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究利用相位編碼閃光誘發出前額穩態視覺誘發電位(Steady -State Visual Evoked Potential, SSVEP)作為控制訊號,發展一套四選項腦機介面系統(Brain Computer Interface, BCI)。傳統視覺誘發電位大多量測於大腦皮質之枕葉區,電極之設置較不便且量測期間易受頭髮干擾,影響量測訊號品質。為了不讓頭髮干擾訊號、以及提升使用性,本研究將電極擺放至國際10-20system之FPz位置,提供一種新的穩態視覺腦波人機介面設計。
    本研究徵召六位受試者,目前發展出的腦波人機介面已經可以達到四個指令的輸入,其平均指令傳輸速度可達7.35 second/command以及91%的準確率。
    ;This study aim to develop a new brain computer interface (BCI), which is based on frontal Steady State Visual Evoked Potential (SSVEP) evoked by phase-tagged flashes in four light emitting diodes (LEDs).Traditional SSVEP-based BCI usually place electrodes on the scalp overlying occipital region. However, scalp around occipital area is usually covered with hair which requires longer setup time than non-hair bearing area and the contact impedance increases with the experiment time. Therefore, in order to achieve a SSVEP-based BCI for convenient use, the measurement of EEG electrode was moved to Fpz position in this study, referring to international EEG 10-20 system.
    Though several studies have been discussed about the relation between frontal SSVEP and cognitive functions, to our understanding, rare literatures were found in BCI applications. To investigate the possibility of frontal SSVEP in BCI use, we have first investigated the frequency-preference characteristics of frontal SSVEP and then evaluate the feasible flash number and flashing frequencies for BCI control. We found frontal SSVEP is more easily influenced by motion artifacts, such as eye blinks and eye movements. With proper rejection of artifact-contaminated SSVEP epochs, the frontal SSVEP can be stably obtained through band-pass filtering and epoch-averaging process. In our study, six subjects were recruited to sequentially input a command sequence, consisting of a sequence of four numbers, repeated twice. The accuracy and information transfer rate (mean ± SD) over the six subjects were 91.00 ± 7.68% and 12.36 ± 3.06 bits/min, respectively.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明