English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23188906      Online Users : 530
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69054

    Title: 調變不同矽與氧流量及氧化溫度所製作鍺奈米球/二氧化矽/ 矽鍺異質結構;Optimization of silicon and oxygen flux and oxidation temperature on Ge-nanoball/SiO2/SiGe gate-stacking heterostructure
    Authors: 羅時慶;Luo,Shih-cing
    Contributors: 電機工程學系
    Keywords: ;Ge
    Date: 2015-08-28
    Issue Date: 2015-09-23 15:12:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文藉由選擇性氧化複晶矽鍺奈米柱/氮化矽/矽材料的結構,來達到低成本、具自我對準且一體成形之鍺奈米球/二氧化矽/矽鍺合金之金氧半異質結構,並且以此結構做成矽鍺電晶體。之前本實驗室已驗證出此結構的介面缺陷約為3.5-5.5×1011 cm-2eV-1 ,足夠做為元件等級的介面,但目前本實驗室都是藉由濕氧900度來氧化矽鍺柱,形成4-5 nm的二氧化矽以及約10 nm的矽鍺合金層,對現今電晶體來說閘氧化層都已微縮至1 nm以下。所以想透過不同的氧化退火條件,來達到可以控制二氧化矽層的厚度,並且想利用SOI 基板使矽鍺合金層被二氧化矽限制住,讓矽鍺合金層的鍺濃度提升,進而增加矽鍺通道的載子遷移率。
    ;We demonstrated a unique approach to generate self-organized, self-alignment, and low-cost Ge-nanoball/SiO2/SiGe-shell gate-stacking heterostructures through the selective oxidation of poly-Si0.83Ge0.17 nano-pillars over the Si3N4 buffer layer on the Si substrate, and then would like to realize SiGe MOSFETs based on this designer heterostructure in the near future. It has been previously demonstrated that the interface trap density (Dit) of SiO2/SiGe heterostructure in the designer heterostructure is about 3.5−5.5 × 1011 cm-2eV-1, which is a promising candidate for high-performance Ge MOSFETs. However, 4nm-thick amorphous interfacial oxide layer was generated during thermal oxidation at 900 °C in H2O ambient, which cannot meet the criteria of prevailing CMOS technology with gate oxide less than 1 nm. In this work, we further reduced the thickness of this SiO2 interfacial layer by tuning the oxidation conditions, such as temperature and oxidation ambient. On the other hand, a SOI substrate was also employed to decrease the SiGe-shell thickness and then increase the Ge content in SiGe shell, forming a high-carrier mobility channel.
    According to a series of experiments with various oxygen fluxes and temperatures in thermal oxidation process as well as different Si substrate to control Si flux, we found the thickness of interfacial SiO2 layer would be significantly reduced with decreasing thermal oxidation/annealing temperature. Meanwhile, gate-oxide quality was also raised as the oxidation temperature decreased, which was confirmed by extensive current-voltage and capacitance-voltage characterizations in MOSC devices. Both results provide great promises for apply the designer gate-stacking heterostructure in Ge MOS applications.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明