English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23364191      Online Users : 446
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69293

    Title: 操作在零直流偏壓和次兆赫波頻段下並具有集極漸變帶溝的高性能銻砷化鎵/磷化銦單載子光偵測器;High-Performance GaAs0.5Sb0.5/InP UTC-PD with Graded-Bandgap Collector for Zero-Bias Operation at Sub-THz Regime
    Authors: 曾郁崙;Zeng,Yu-lon
    Contributors: 電機工程學系
    Keywords: 零偏壓單載子光偵測器;zero bias UTC-PD
    Date: 2015-12-08
    Issue Date: 2016-01-05 19:09:28 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 高速高功率光偵測器在毫米波光纖和太赫茲無線通訊系統扮演重要角色,為了將元件速度推進到太赫茲頻段,必須減少空乏層厚度和主動區面積,使其縮短內部載子的傳輸時間和RC造成的頻寬限制,達成高頻目標。然而,減少元件的結構大小常會使其在高功率操作下造成嚴重的熱毀壞效應。元件最主要的發熱來源為輸入电功率,為DC反向偏壓和光電流的乘積所造成,所以讓光偵測器在零偏壓操作下還可以保持高速高功率的表現是解決熱效應的最佳方法。
    在這次實驗中,我們證實了透過創新的磊晶結構設計可以大幅增加元件在零偏壓下的特性表現,藉由使用type II吸收層/收集層(GaAs0.5Sb0.5/InP)接面和在收集層中使用AlxInyGa1-x-yAs漸變能帶,即可使電流阻斷效應降低。最好的高速表現(2mA下3db頻寬可達到~140GHz)和160GHz操作頻率下的高輸出功率(8mA下可達到-13.9dBm)已經被成功證實。

    ;High-speed and high-power photodiodes (PDs) serve as the key component in the millimeter-wave-over-fiber (MoF) or THz wireless communication system. In order to boost the speed of PD up to THz regime, downscaling the depletion layer thickness and device active area is an essential way to minimize both the internal carrier transient time and RC-limited bandwidth. However, the miniaturized size of device usually results in serious device-heating and thermal failure under high-power operation. The primary source of self-heating is the input electrical power, which equals to the product of dc reverse bias of PD and its output photocurrent. To have the PD sustain high-speed and high-power performance even under zero-bias operation should thus be one of effective solutions to minimize this thermal issue.
    Uni-traveling carrier photodiodes (UTC-PDs), which have only fast electron as active carriers under small external applied electric field (~ 10 kV/cm), is one of attractive choices to meet the above-mentioned application under zero-bias operation. Such device structure has demonstrated an excellent 3-dB O-E bandwidth (>110 GHz) under 1.2 mA output photocurrent with a moderate saturation output power (-18.6 dBm at 2mA) at 100 GHz.
    In this work, we demonstrate a novel design of UTC-PD, which can further enhance its zero-bias performance. By using type-II (GaAs0.5Sb0.5/InP) absorption/collector interface and AlxInyGa1-x-yAs graded bandgap structure in the collector layer, the current blocking (Kirk) effect can be minimized. State-of-the-art high-speed performance (~140 GHz 3-dB O-E bandwidth at 2mA output photocurrent) and output power (-13.9 dBm at 8 mA) at sub-THz regime (160 GHz) under zero-bias operation has been successfully demonstrated.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明