English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24675081      Online Users : 352
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69378

    Title: 在外加振盪磁場中阻尼磁針的非線性動力學分析;Numerical and theoretical analysis of the nonlinear dynamics of a damped compass under external oscillatory magnetic field
    Authors: 許庭瑋;Hsu,Ting-wei
    Contributors: 生物物理研究所
    Keywords: 非線性動力學;非線性振盪;吸引子共存;對稱性;Nonlinear dynamics;Nonlinear oscillation;Attractors coexisting;Symmetry
    Date: 2016-01-28
    Issue Date: 2016-03-17 19:40:59 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 我們研究了振盪磁場中的阻尼磁針系統,振盪磁場由垂直交錯的兩部分合成,一部分是方向大小固定的磁場B1(可以是地球磁場),另一部分是以正弦形式、振幅為B2的外加振盪磁場。磁針的擺動是複雜的非線性振盪,它會在外磁場振幅增加時,經由週期倍增路徑變成混沌的振盪。系統的運動方程式具有「角度反轉,同時時間平移二分之奇數倍個磁場振盪週期」的對稱性。因為這個對稱性,磁針振盪運動有對稱的週期和混沌吸引子共存。我們用數值方法解微分方程組和畫出相空間圖,檢查當系統的參數改變時,吸引子的性質如何隨參數改變,例如:成對對稱的吸引子是如何出現和合併。有趣的是,我們不只發現了具有相同週期的吸引子成對對稱地出現。在某些參數區間,彼此不對稱的兩個單數週期吸引子也可以共存,以及一對成對對稱的週期二吸引子和一個混沌吸引子的共存也被我們發現。;We consider a magnetic dipole (compass needle) under a constant magnetic (Earth′s) field and an external sinusoidally oscillating magnetic field (of magnitude B2) that is perpendicular to the former. The angular motion displays complex nonlinear oscillations and undergoes a period-doubling route to chaos. The equation of motion of the system possesses a special symmetry when angle inversion together with time translation of half of the driving period is applied. Due to this symmetry, coexistence of attractors, including symmetric periodic states and symmetric chaotic strange attractors, occurs. The properties of these attractors, such as how the symmetric attractor pairs appear and merge, as revealed by numerical solution of the differential equations and phase portraits, are examined in detail as the parameters of the system change. Interestingly, it is found that in addition to the coexistence of symmetric limit cycle attractor pair (both having the same period state), two different odd-periodic states not related by symmetry, can coexist. In addition, a pair of symmetric period-2 limit cycles and a chaotic attractor can coexist in certain parameter regimes.
    Appears in Collections:[生物物理研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明