English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23266185      Online Users : 486
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/70306

    Title: 利用設計結構矩陣探討智慧型穿戴式裝置開發模式
    Authors: 江昕修,;Chiang,Hsin-hsiu
    Contributors: 工業管理研究所在職專班
    Keywords: 設計結構矩陣;智慧型穿戴式裝置;Design Structure Matrix;Intelligent wearable devices
    Date: 2016-05-17
    Issue Date: 2016-06-04 12:19:50 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 新產品開發過程複雜且涉及範圍廣泛,使用新穎的科技技術、結合顧客應用需求、迎合工廠生產製程良率與研發成本經費管控等都是需要思考與顧及的面向。在達到市場需求的前提條件下,如何有效整合現有人力與物力資源並配合嚴格執行已安排好的緊湊研發時程,幾乎等同於企業打造競爭力與獲利最核心的關鍵,也變成企業最重要的課題之一。



    關鍵字 : 設計結構矩陣,智慧型穿戴式裝置
    ;It is complicated and involves in wild ranges when it comes to new product developing process. Applying unique technology, combining customer demands, meeting factory production yield rate and controlling R&D cost are the aspects that all need to be considered. As a prerequisite of meeting market demand, the importance of integrating current human and material resources effectively and following arranged schedule strictly is as much as enhancing the competitive power and making profit of an enterprise which is the most important lesson nowadays.

    The main purpose of this study is to investigate the development pattern of intelligent wearable devices through Design Structure Matrix. DSM has the characteristic that break down complicated system problems and redefine the elements into different groups. Applying the characteristic of DSM breaking down the developing process of the 1st generation wearable devices and rearrange the orders of work details, is not only helping shorten the development lead time of the 2nd generation but also helping analyzing the production and developing advantages of the 2nd generation through dividing the key components of the 1st generation into groups.

    By putting DSM into practice, this study improves the developing process of 2nd generation wearable devices. The total developing lead time is shorten in great scale from 250 days to 205 days, and divided 30 key parts into 9 groups. It reaches the goal of speeding up new product time to market, lower the risk of designing change during developing period and increase the flexibility of application by the material module development.

    Key word : Design Structure Matrix,Intelligent wearable devices
    Appears in Collections:[工業管理研究所碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明