資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/70325
|
題名: | 含多吡啶有機配子之多孔性金屬有機配位聚合物自組裝合成、結構鑑定與氣體吸附性質研究;Self-Assembly, Structures, Gas Adsorption and Applications of Porous Metal–Organic Frameworks Constructed from Multi-pyridyl Ligands |
作者: | 李立偉,;Lee,Li-Wei |
貢獻者: | 材料科學與工程研究所 |
關鍵詞: | 金屬有機配位聚合物;Metal–organic frameworks;Homochiral;Nanotube;Pillared-layer;Self-assembly |
日期: | 2016-05-03 |
上傳時間: | 2016-06-04 12:49:08 (UTC+8) |
出版者: | 國立中央大學 |
摘要: | 本論文旨為多孔性金屬有機配位聚合物之設計合成、結構分析與性質研究。過渡金屬鹽類與中性含吡啶配基或雙羧酸根配基以自組裝法合成出11個多孔有機金屬配位聚合物,產物結構皆經由紅外線共振光譜、元素分析、熱重分析、單晶X光繞射分析與粉末X光粉末繞射分析等方法鑑定。合成之多孔金屬有機配位聚合物結構多樣,包含一維結構、二維平面結構與三維立體結構。化合物{[Zn2(azpy)(aip)2]·2DMF}n (1)、{[Zn2(dipytz)(aip)2]·DMF·MeOH}n (2)與{[Zn2(tpim)(aip)2]·2.5DMF·2H2O}n (3)皆為二維雙層柱狀結構。化合物{[Zn2(tpim)2(D-cam)2]·10H2O}n (4)和{[Zn2(tpim)2(L-cam)2]·10H2O}n (5) 為二維手性平面結構。化合物{[Cd2(tpim)4(SO4)(H2O)2]·(SO4)·21H2O}n (6)為二維(6,3)磚狀拓樸平面結構。化合物{[Zn(4-abpt)05(3,4-pydc)]·DMAc·1.5MeOH·0.5H2O}n (7)為三維層柱狀結構。化合物{[Zn(4-pimp)(3,4-pydc)]·2DMAc}n (8)和{[Zn2(tpim)(3,4-pydc)2]·4DMF·4H2O}n (9)分別為手性二維平面結構和三維層柱狀結構。化合物[Zn(tpim)(cis-1,4-chdc)]·3H2O (10)為一維單層奈米管狀結構,而化合物[Zn2(tpim)2(trans-1,4-chdc)2]·6H2O (11)為二維層狀結構。 化合物1–11皆為多孔金屬有機配位聚合物。化合物1–3取決於支柱配體的長度和形狀而有不同的孔隙體積和通道形狀,以及在溶劑置換過程中能調控結構中靈活性(1和2)與剛性(3)結構。化合物1–3對二氧化碳的捕捉具有選擇性吸附能力。而另外值得注意的是化合物4與5在接近室溫下對二氧化碳的吸附顯示出少見的柵門開關吸附行為,且在二氧化碳脫附時呈現出寬帶遲滯現象。化合物6是由二種不同鍵結方式的硫酸根陰離子與中性配子所形成的二維層狀結構,對硫氰根離子和疊氮根離子有不同的陰離子交換能力。有趣的是,化合物6之硫酸根離子可被硫氰根離子全部交換而產生結構轉換,而疊氮根離子只有部分取代硫酸根離子。化合物7是具一維蜂窩狀通道的三維層柱狀結構。值得注意的是,以四面體配位環境的鋅金屬中心經由金屬離子交換實驗中能完全被銅離子置換,並觀察到良好的非線性光學特性。化合物8和9皆具有同手性的斜方系空間群P212121。化合物8為二維層狀結構。化合物9是具一維通道的三維層柱狀結構且表現出顯著可逆熱致變色行為。化合物10和11由不同構型的雙羧酸根配基與中性配子經由自組裝反應形成一維單壁奈米管狀結構與二維層狀結構,並觀察到不同的氣體吸附現象。 ;In this thesis, a series of porous metal–organic framework (MOFs) were synthesized by reacting rigid multi-pyridyl ligands, various dicarboxylate ligands and d10 metal ions (Zn2+ and Cd2+) under mild reaction conditions. The structures of these compounds range from one dimensional single-walled nanotubes, and two dimensional layers to three dimensional networks. The structure of the compounds {[Zn2(azpy)(aip)2]·2DMF}n (1), {[Zn2(dipytz)(aip)2]·DMF·MeOH}n (2), and {[Zn2(tpim)(aip)2]·2.5DMF·2H2O}n (3) assume a two-dimensional pillared-bilayer framework with 1D channels created inside the bilayers. Compounds {[Zn2(tpim)2(D-cam)2]·10H2O}n (4) and {[Zn2(tpim)2(L-cam)2]·10H2O}n (5) are composed of homochrial two-dimensional layers with a rectangle-like (4,4) topology. Compound {[Cd2(tpim)4(SO4)(H2O)2]·(SO4)·21H2O}n (6) shows a two-dimensional layer structure with a brick-wall-type (6,3) topology. Compound {[Zn(4-abpt)0.5(3,4-pydc)]·DMAc·1.5MeOH·0.5H2O}n (7) features a three-dimensional pillared-layer framework with a (3,4)-connected net. Compound {[Zn(4-pimp)(3,4-pydc)]·2DMAc}n (8) adopts a homochiral two-dimensional layered structure and {[Zn2(tpim)(3,4-pydc)2]·4DMF·4H2O}n (9) displays a homochiral three-dimensional pillared-layer network. Compound [Zn(tpim)(cis-1,4-chdc)]·3H2O (10) displays an independent 1D single-walled metal–organic nanotube and [Zn2(tpim)2(trans-1,4-chdc)2]·6H2O (11) shows a two-dimensional layered structure. All of the compounds are porous materials with different pore volumes and channel shapes. The pillared-bilayer frameworks of 1–3 have different pore volumes and channel shapes depending on the length and shape of the pillar ligands as well being feasible to tune the structural flexibility (1 and 2) or rigidity (3) through solvent-exchange processes. The resoluting MOFs exhibit a higher selective adsorption of CO2 over H2 and N2. It is noteworthy that the enantiopure compounds 4 and 5 showed an uncommon gate-opening effect on CO2 sorption and displayed a wide hysteresis loop upon desorption under ambient conditions. Compound 6 consists of a 2D layer structure with two types of sulfate anions and exhibits anion exchange capability with SCN− or N3− anions. Interestingly, the anion-exchanged products of 6 with SCN− or N3− are very different. Compound 7 adopted a three-dimensional porous pillared-layer framework with 1D honeycomb channels. Remarkably, the tetrahedral coordination environment of ZnII ions in 7 could be changed by the presence of other transition metal ions in a DMAc solution. Furthermore, compound 7 also displayed significant non-linear optical behavior. Compounds 8 and 9 crystallize in the homochiral orthorhombic space group P212121. Compound 8 adopted a 2D layer structure. Compound 9 showed a 3D pillared-layer framework with the rectangular-shape one-dimensional channels and revealed significant reversible the thermochromic behavior. Compounds 10 and 11 were constructed from the conformationally flexible 1,4-H2chdc (cis- or trans-) and tpim ligands under hydrothermal conditions and displayed different gas adsorption behaviors. |
顯示於類別: | [材料科學與工程研究所 ] 博碩士論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 606 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|