English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22355619      Online Users : 357
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71450


    Title: 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量;Developing Perfluorinated Photobioreactor System to Purify Biogas and Concurrently Enhance Yields of Biomass and Biolipid of Microalgae
    Authors: 翁祖駿;Weng,Tsu-Chun
    Contributors: 生物醫學工程研究所
    Keywords: 沼氣;二氧化碳;微藻;光生物反應器;全氟碳化物;生物質;Biogas;Carbon dioxide;Microalgae;Photobioreactor;Perfluorocarbon;Biomass
    Date: 2016-08-29
    Issue Date: 2016-10-13 13:04:55 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 一般沼氣中約含有40%的二氧化碳,而該成分已知會嚴重影響沼氣的燃燒效能並造成溫室效應。微藻能通過光合作用回收二氧化碳並能產出生物質能,由此展現出微藻對沼氣中二氧化碳去除能力的高潛在發展性。然而,給予微藻的二氧化碳的量必須適當控制以確保微藻不致反向造成生長抑制。全氟碳化物(Perfluorocarbon;PFC);烴類的氟取代的衍生物,與水相比之下能溶解大量的呼吸和其它非極性氣體。因此,本研究將微藻與PFC做結合,設計一套全氟碳化物光生物反應器系統(Perfluorinated Photobioreactor System;PPBRS),其可同時純化沼氣並利用PFC調節供給微藻生長之二氧化碳含量以進一步提升微藻產能。首先,我們先測試不同氣體流速對於擬球藻生長的影響,使用空氣模擬不同氣體流速進行試驗。接著測試不同濃度之二氧化碳其濃度範圍在1-6%對微藻生長、生物質、脂質與二十碳五烯酸(eicosapentaenoic acid;EPA)產量的影響。此外,我們評估PFC對混合氣體中二氧化碳的吸碳能力進行測試。最後,我們測試PPBRS全系統對沼氣純化能力與提升微藻生長能力及產率之效能。由實驗結果中發現,充入的氣體流速提升越高,生長狀態越佳,由最高速1000 mL/min與無通氣來看其中第五天細胞濃度上提高了7倍,從中確定了流速對微藻生長了影響力。接著我們選定20 mL/min 流速並使用PFC調整供給微藻的二氧化碳濃度。在供給不同濃度二氧化碳對微藻生長的實驗中,我們發現從培養五天後的細胞濃度與同流速通空氣的組別相比,接受攜帶2%二氧化碳PFC的細胞其濃度提高了2倍,而生物質、總脂質與總EPA產量也均提高2倍左右,顯示為最佳之微藻培養條件。另外我們從PFC對混合氣體(60% N2-40% CO2)中二氧化碳的擷取能力進行測試中,在相同出氣量與流速的狀態中發現在12小時內FC-40的吸收碳能力是水溶液的2倍。經由以上實驗結果,我們以流速20 mL/min通入2%濃度之二氧化碳以及混合氣體(60% N2-40% CO2)出氣量1.42 mL/min 條件操作PPBRS,並進行氣體純化與微藻生長效能的實際測試。結果顯示PPBRS能夠有效吸收混合氣體中的二氧化碳並使其濃度在操作5天內維持在5% 以下,且能夠同時提升擬球藻生物質2倍的產量。綜合以上所述,本研究中所設計開發之全氟碳化物光生物反應器系統(PPBRS)預期可作為提供純化沼氣與提升微藻生物質與脂質產量之裝置。;Normally biogas contains ~40% CO2 and it may severely hinder the combustion efficiency of biogas and cause greenhouse effect accordingly. Microalgae have been known to be able to recycle/metabolize CO2 through photosynthesis and produce abundance of chemicals/biologicals in form of biomass and/or biolipids, showing a high potential for use in CO2 removal for biogas purification. However, the amount of CO2 given to microalgae has to be adequately controlled to avoid CO2-induced inhibitory effect on the microalgal growth. To meet this goal, a perfluorocarbon (PFC)-mediated photobioreactor setup, named perfluorinated photobioreactor system (PPBRS), was developed in this study. We first examined the effect of gas flow rate on the growth of Nannochloropsis oculata (N. oculata) by using normal air as the model gas. Then we investigated 1) how the concentration of CO2 in range of 1 – 6% affects the growth and productions of N. oculata, including biomass, total lipid, and eicosapentaenoic acid (EPA); and 2) capability of PPBRS for CO2 absorption from a mixture gas in sequence. Ultimately the effects of using PPBRS to absorb CO2 form a mixture gas and convert those isolated CO2 to enhanced growth and productions of N. oculata were comprehensively examined. Our data show that the microalgal growth enhanced along with increase of the flow rate of air that the concentration of cells provided by air with flow rate of 1000 mL/min remarkably enhanced 7 folds as compared to the group without air supply. Among different CO2 concentrations provided by FC-40 with flow rate of 20 mL/min, the group with 2% CO2 exhibits the highest productions of N. oculata that the concentration of microalgae, as well as their productions of biomass, total lipid, and EPA dramatically enhanced 2 folds after operation for 5 days, showing that 2% CO2 is the optimal setting for N. oculata growth in PPBRS. In addition, our results show that the capacity of FC-40-mediated purification unit for CO2 adsorption from a N2/CO2 mixture (N2 : CO2 = 3:2 v/v) is 2-fold higher than that obtained by using water within 12 h, implicating that PPBRS is capable for CO2 isolation. Through the operation with PPBRS, we found that the CO2 concentration remaining in the input N2/CO2 mixture (N2 : CO2 = 3:2 v/v) was < 5% (v/v) throughout the experiment and the concentration of N. oculata cultured with isolated CO2 significantly enhanced 2 folds as compared to the cells normally cultivated with air supply under equal delivery velocity (20 mL/min). In summary, we anticipate that the developed PPBRS may offer a feasible means to 1) isolate CO2 from biogas and 2) enhance microalgal growth and productions concurrently in a closed and large-scale setting.
    Appears in Collections:[生物醫學工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML512View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明