English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24683967      Online Users : 278
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72052

    Title: 應用相關回饋之概念資訊 於文件重排序之方法;The application of the concept information residing in relevance feedback for document re-ranking
    Authors: 楊棨鈞;Yang,Chi-Chun
    Contributors: 資訊管理學系
    Keywords: 文字探勘;文件重排序;相關回饋;LDA;概念萃取
    Date: 2016-06-30
    Issue Date: 2016-10-13 14:23:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在文字探勘的領域中,向量空間模型上的相關回饋研究,是以使用者對於系統所回傳的相關文件清單,萃取其字頻資訊作為回饋的特徵值,該模型以Rocchio查詢擴張最被廣泛使用,然而Rocchio是將相關文件字頻扣除不相關文件字頻,得出字頻高低排序後,用以當作查詢擴張的字詞來源,其演算法效能雖具一定水平,但是否有其它更好過濾不相關字詞的機制,仍然是一個有趣的議題。然而,近年來語意搜索(Semantic search)的概念逐漸形成,也造成許多的搜尋引擎開始以使用者查詢的語意做為搜尋依據,主要考量的是關鍵字上面所涵蓋的語意概念,而非單純使用關鍵字本身。因此,本研究基於現有的自然語言(Natural language processing)相關研究,運用概念萃取演算法LDA,將使用者所提供的相關與非相關的文件資訊,萃取其概念特徵值,得到相關與非相關之主題,接著將相關主題與目標文件集做相似度計算,可以得到文件集的初始排序,之後再利用非相關主題對初始文件排序做調整,便可得到修正後的文件排序,經過實驗證實,本研究所提出之方法可有效提升資訊檢索的準確率。;In the past, the main method in the application of relevance feedback was to aggregate the term frequencies in the feedback documents that the user provided as the feedback characteristics in the vector space model. Rocchio’s query expansion was the most popular one. It reduced the term frequencies of non-relevant documents from the relevant ones first. Then, it ordered the terms by the frequency and kept the top ones as the source for query expansion. Rocchio’s method has been well-performed. Nevertheless, it still is an interesting question: “Is there any better mechanism to filter the non-relevant terms from relevant ones?” Recently, the idea of semantic search is getting more and more popular. Instead of using term-matching to search documents, many on-line search engines promote itself by using the semantic meaning of the user’s query. It is concerned with the semantic meaning that the key words covered. Based on the NLP technique, this research is interested in the application of a concept-retrieval algorithm, LDA, to collect the concept characteristics from relevant documents and non-relevant documents, and use the concept information to adjust document re-ranking.
    Appears in Collections:[資訊管理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明