中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72148
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41641451      在线人数 : 1433
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/72148


    题名: 深度與色彩資訊於PMHPSO-TVAC之即時多目標追蹤應用;Object Tracking Based On PMHPSO-TVAC with Color and Depth Data in Real Time
    作者: 李政勳;Li,Zheng-Xun
    贡献者: 電機工程學系
    关键词: PMHPSO-TVAC演算法;目標物追蹤;目標物偵測;種子區域生長法;深度資料;PMHPSO-TVAC;Object tracking;Object detection;Depth data;Seed Region Growing Method
    日期: 2016-07-15
    上传时间: 2016-10-13 14:28:32 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,隨著攝影機與監視器的普及,物件偵測及物件追蹤是電腦視覺領域中一門重要且充滿挑戰性的研究課題。針對單一物件追蹤而言,其困難點在於複雜環境與追蹤物件的高變異性,複雜環境因素包含:光線、角度,而追蹤物外觀的變異性又可分為剛體(角度變化)與非剛體形變,以及遮蔽等問題。
    本研究中,主要應用改良型PSO演算法(PMHPSO-TVAC)來對目標物進行即時追蹤。而在偵測目標物方面,則以影像相減法來切割出目標物與背景。再來則是利用改良的種子區域生長法來標記各個目標物,區分出各個目標物後,再計算出各個目標物的中心位置。接著對各個目標物建構顏色直方圖與深度直方圖模型以便做追蹤使用,然而在追蹤過程中很容易受到光線變化影響,採用HSV色彩空間中的色相,盡量減少了亮度的影響。然而,在光線極度昏暗的情況下能無法改善干擾,故本論文建構目標物的深度直方圖模型來補償目標物的描述方式。
    最後,利用目標物的深度直方圖與顏色直方圖模型,以PMHPSO-TVAC演算法來進行多目標追蹤。
    ;In recent years, with the popularity of the camera and monitor, object detection and object tracking field are important and challenging research topic. For object tracking, it is difficult to track objects in complex environments. In order to improve the tracking speed and solve the shadowing problem, this paper uses Position Mutated Hierarchical Particle Swarm Optimization with Time-Varying Acceleration Coefficients (PMHPSO-TVAC) algorithm for object tracking in real time. In terms of object detection, in this study, the background subtraction is used. And can cut out complete targets. The background subtraction has low computation and be easily applied to real-time systems. Besides, the improved seed region growing method is used to distinguish every target. Then, for model building, color histograms are used to build target models. However, in no-light environment, we can’t track any target, so this paper construct depth histogram object model to compensate for object model. Finally, we used the depth histogram and color histogram model with PMHPSO-TVAC algorithms for multi-target tracking.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML214检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明