English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23276886      Online Users : 439
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72170


    Title: 複雜背景之 3 維深度手勢辨識與追蹤;Three-Dimensional Hand Recognition and Tracking with Depth Information under Complicated Environments
    Authors: 章坤瀧;Zhang,Kung-Long
    Contributors: 電機工程學系
    Keywords: 手勢辨識;雙鏡頭深度;動態手勢
    Date: 2016-07-21
    Issue Date: 2016-10-13 14:29:57 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著近幾年來浮空手勢操作的發展,人們逐漸從傳統鍵盤與滑鼠
    的操作介面,轉變為更符合人類的直覺操作模式,如:手勢操作。本
    論文提出一個基於三維深度的手勢辨識與追蹤演算法,本系統使用低
    成本的雙攝影機來計算深度影像,不但可以提供手勢的深度資訊,也
    能在嚴峻複雜的背景中正常運作。
    目前大部分的手勢偵測演算法採用膚色或運動量值做為前處理
    步驟,但只透過膚色濾除和運動量無法在含有相近顏色背景下維持此
    系統的功能性,本論文提出一個適應性的膚色深度過濾,此方法可以
    有效分離出系統需要的手部區塊,也能改善追蹤演算法的成效。最後
    透過深度資訊完成深度動態手勢辨識,經過多位使用者測試,手勢方
    向移動功能準確率 93.7%,深度推拉功能準確率 95.6%,手勢旋轉功
    能準確率 94.5%,動態手勢準確率 85.92%。;Accompany with mid-air control system have been developed in
    recent years, people gradually change their usage from tradition
    keyboard and mouse to the intuitive manner, like hand gesture control.
    This thesis proposed a hand recognition and tracking with depth
    information. We use stereo camera to capture stereo image and
    calculate depth map. The system not only can provide depth
    information but also can work under critical backgrounds.
    Most methods of hand detection apply skin filter or motion filter
    as one of pre-processing. However, only applying skin filter or motion
    filter as segmentation step can’t maintain system function correct
    while background pixels are close to skin color. In the proposed, we
    adopt adaptive depth filter which can separate foreground which
    improve performance on tracking algorithm. We also proposed
    dynamic gesture recognition by using depth data. Our accuracy of
    direction function is 93.7%, accuracy of push/pull function is 95.6%,
    accuracy of rotation function is 93.7%, accuracy of dynamic function
    is 85.92%.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML190View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明