English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42118912      線上人數 : 1209
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/72217


    題名: 結合類神經網路及Kinect深度攝影機之跌倒偵測系統;A Fall Detect System Based on Neural Networks with Kinect Depth-Camera
    作者: 廖家偉;Liao,Jia-Wei
    貢獻者: 資訊工程學系
    關鍵詞: Kinect;跌倒偵測;類神經網路;影像監控;Kinect;fall detect system;video surveilleance;eldercare;neural netwroks
    日期: 2016-08-08
    上傳時間: 2016-10-13 14:33:03 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來社會面臨老年化日趨嚴重的問題,老人照護議題也越發重要;老
    人跌倒的發生頻率高,且常附帶著因延後就醫所帶來的巨大風險,因此跌倒
    偵測的相關研究越來越蓬勃發展。本論文開發一套基於結合Kinect 及類神
    經網路的跌倒偵測系統,希望在多人情境下,能夠正常運作,使其更貼近現
    實生活。本系統使用Kinect 所提供之深度資訊,找出場景中的地面資訊,
    再搭配背景相減演算法,找出前景資訊,並進一步追蹤;再利用事前訓練好
    的類神經網路模型及選定的特徵,判斷是否有跌倒事件發生,當系統偵測跌
    倒時,會記錄當下的畫面以及時間,回傳給照顧者。本論文會針對規則式判
    斷可能會發生誤判的情況做探討,及利用類神經網路所帶來的優勢。
    本論文設計了六種模擬情境,三種單人情境、三種多人情境,並且比較
    規則式判斷及使用類神經網路的實驗結果,探討之間的差別以及誤判的可
    能因素。在全部的情境中總共有168 次跌倒事件以及168 次未跌倒事件,
    其實驗結果,敏感度(Sensitivity)約為97%,特異度(Specificity)約為90%,
    Kappa 值為0.84,證明系統有幾乎與事實吻合的程度。;Recently, society is faced with the problematic issue of an aging population.
    The eldercare issue is extremely important. The frequency of falls in the elderly
    is higher than in younger people with a greater risk caused by treatment delay.
    Therefore, the research of fall detection systems has been increasing drastically.
    This thesis proposes to develop a fall detection system based on neural networks
    with Kinect depth-camera. We hope it can operate reliable in a complex
    environment or in multi-person scenarios. The system uses raw data of Kinect
    depth images to locate the ground in the scene, identify the foreground pixels with
    a background subtraction algorithm, and then tracked the foreground for analysis.
    Last, the system will judge whether the fall events occurred by using its welltrained
    neural networks model and the specified features. When fall events are
    detected, the system would record the image and time immediately, then report to
    caregivers for efficient aid. Additionally, this thesis will discuss the reasons for
    rule decision system’s misjudgment and the advantages of using neural networks.
    The performance of the proposed system was verified by six experimental
    scenarios. There are three single person and for multi-person experimental
    scenarios. After these experiments, we would compare the result of rule decision
    system with the proposed system and discuss the difference and the reason of
    misjudgment between both of them. Among all of these experimental scenarios:
    168 are fall events and 168 are not fall events. The results show the sensitivity
    iii
    rate and the specificity rate were 97% and 90%, respectively. And the Kappa value
    of the proposed system is 0.84 which is higher than 0.80, showing that we have a
    reliable system that accurately reflects reality in terms of fall events.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML210檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明