English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24627056      Online Users : 294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72326

    Title: A note on Carleson measure spaces associated to para-accretive functions
    Authors: 鄭雅文;Cheng,Ya-Wen
    Contributors: 數學系
    Keywords: Calderon-Zygmund算子
    Date: 2016-07-05
    Issue Date: 2016-10-13 14:47:47 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 我們要討論的是在CMO^p_b上的Calderon-Zygmund 算子有界性。令T是一個Calderon-Zygmund算子,如果Tb = 0,則M_bT在CMO^p_b上是有界的,其中p介於n/(n+(ε/2))和1之間,ε是一個關於算子T核的光滑性指數。相反地,如果M_bT在BMO_b = CMO^1_b上有界,則Tb = 0。
    ;In this paper, we study the boundedness of Calderon-Zygmund operator on the Carleson measure spaces CMO^p_b associated with para-accretive function b. Let T be a Calderon-Zygmund operator. If Tb = 0, then M_bT is bounded on CMO^p_b, for n/(n+(ε/2)), where ε is the regularity exponent of the kernel of T. Conversely, if M_bT is bounded on BMO_b = CMO^1_b, then Tb = 0.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明