English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24620020      Online Users : 380
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72524

    Title: 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢;Reductive dissolution of mercury-bearing iron(III) (oxyhydr)oxides by dissimilatory iron-reducing bacteria and the potential to mobilize mercury in its elemental form
    Authors: 王詩芸;Wang,Shih-Yun
    Contributors: 環境工程研究所
    Keywords: 異化性鐵還原;地下含水層;元素汞生成;汞移動潛勢;dissimilatory iron reducing bacteria;aquifers;formation of elemental mercury;mercury mobility
    Date: 2016-08-29
    Issue Date: 2016-10-13 15:26:30 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 汞是毒性最強的元素之一,當地下水遭受汞污染時將導致此水資源無法被適
    還原菌 Shewanella oneidensis MR-1 為模式生物,環境中最常見的三價鐵礦hematite (赤鐵礦)與 goethite (黃鐵礦)為模式礦物進行厭氧縮模試驗,待 Hg(II)與hematite 或 goethite 於試驗培養液中達吸附平衡後加入 MR-1,並隨時間分析系統中的溶解汞、元素汞與總亞鐵的含量變化,以觀測地下含水層中當異化性鐵還原菌受刺激生長後二次鐵礦的形成及汞的氧化還原轉換與移動潛勢。試驗與模擬的結果顯示,Hg(II)與 Fe(III)鐵礦可能因靜電吸引作用的關係而迅速地達到吸附平衡,且此平衡在添加 MR-1 菌株後並未受到劇烈破壞。此外,汞的還原程度雖然隨著 MR-1 對不同鐵礦的使用而有所差異,但不論是在含有 hematite 或 goethite的系統,元素汞的生成皆可對應細胞的生長代謝,且過程中所檢測到的溶解汞濃度的變化皆不甚明顯。這些結果支持原本的假說,即「地下飽和含水層中原吸附/鑲嵌於鐵礦的 Hg(II)在受到鐵還原菌生長代謝的影響下,將因生源性 Fe(II)的生成而易被還原成 Hg(0),使得整體 Hg 於地下水環境中的移動性提高,進而促成汞的污染擴散」。;The groundwater contamination with mercury (Hg) is an increasing problem worldwide, and since Hg is highly toxic, contamination may render this water resource unsuitable for intented use. In many cases, the external pollution sources are not well defined, and samples taken from monitoring wells are oftentimes characterized with (i) elevated levels of organic carbon and (ii) a positive correlation between concentrations of total Hg or elemental Hg and dissolved iron (Fe). On the basis of these
    observations, possible mechanisms of the biogeochemical processes that underlie the contamination scenarios have been proposed, including the most acceptable one that
    postulates “growth and associated metabolisms of indigenous iron-reducers may have been the primary cause for the alternation of Hg speciation and mobility in the aquifer”.
    However, such hypothesis is completely derived from results of the studies that only investigated redox transformations of Hg in the aqueous phase of a heterogeneous
    system, which may not be representative of the real situation encountered in the aquifer, as Hg is considered originating from saturated Hg-bearing sediment (i.e., the
    solid phase). To validate this hypothesis, laboratory microcosm experiments were conducted to simulate processes of microbially-induced reductive dissolution of Fe(III)
    minerals by equilibrating Hg(II) adsorption onto synthetic hematite and goethite (two of the most commonly found iron oxyhydroxides in the environment used as model minerals) prior to the addition and growth of the model bacterium, Shewanella oneidensis MR-1 (an iron reducer). Hg(0), dissolved Hg(II) and total Fe(II) were measured periodically over the course of the experiment to monitor the trends of phase distribution, redox transformation and thus mobility of Hg resulted from microbial
    growth coupled with transit of secondary iron mineral formation. It was observed that equilibrium of Hg(II) adsorption onto Fe(III) minerals was reached rapidly presumably due to strong electrostatic interactions, and was not significantly disturbed after the
    spike of bacterial cells. In addition, formation of Hg(0) corresponding to the growth of cells, as well as little detection of dissolved Hg(II) were observed. These results support the original hypothesis and indicate that Hg(II) deposited in the sedimentary zone would be reduced and released as Hg(0) on account of biogenic Fe(II) produced
    by iron-reducing bacteria and therefore the entire process potentially promotes the movement of Hg in the aquifer environment.
    Appears in Collections:[環境工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明