English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23247655      Online Users : 342
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72593

    Title: 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究;Application of one-snap multi-angle spectroscopy optical system for studying of spatial spectra of organic light emitting diodes
    Authors: 戴振全;Dai, Jen-Chuan
    Contributors: 光電科學與工程學系
    Keywords: 即時多角度量測光譜儀;有機發光二極體;空間頻譜;one-snap multi-angle spectroscopy optical system;organic light emitting diodes;spatial spectra
    Date: 2016-11-17
    Issue Date: 2017-01-23 16:33:50 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文研究著重於即時多角度量測光譜儀系統架設與校準步驟,並且嘗試將其應用於有機發光二極體之空間頻譜的研究上。系統光學設計方面,採用Afocal系統架設,此理論不僅利於系統之架設;亦利於系統放大倍率之匹配。此外,在光路系統上,光由物鏡進入系統且將角度維度展開,在狹縫上擷取出空間頻譜,並且在光柵使波長維度分光。
    首先,系統架設初期,需觀察由CMOS(Complementary Metal-Oxide-Semiconductor)上pixel所對應之真實波長與角度,亦利用Lambertian光源確認光路系統在光學上成像是否清晰,且波長未飄移。將三種不同波長(635 nm、532 nm、473 nm)之雷射入射系統,搭配汞燈頻譜(546.07 nm、576.96 nm、579.07 nm)做為波長校正之入射光源,透過波長校正可知此系統在波長維度上成線性關係。再者,角度校正方面,亦利用三種不同波長(635 nm、532 nm、473 nm)之雷射入射系統,發現其系統之角度校正與入射光源之波長無關,系統角度維度上成三次多項式曲線。最終,光強校正的部份,本實驗採用工研院所提供之高穩定性的藍、綠光有機發光二極體(organic light emitting diodes, OLED)做系統光強校正,並且利用本實驗室自行製作之紅光(NPB/TPB3:DCJTB/Alq3)、綠光(NPB /Alq3)元件來驗證其光強校正的準確性。
    此外,實驗的過程中亦發現了,即時多角度量測光譜儀系統之優點,其變因相較於傳統光纖系統少,且元件面積以及其穩定性要求較低。拍攝過程上即時多角度量測光譜儀系統可以立即(<1 s)擷取到待測物之影像,相較於光纖需要長時間的驅動,光譜儀系統更加便利且迅速。而兩系統擷取影像的方式亦不同,即時多角度量測光譜儀系統將待測物(面光源)直接靠置於物鏡上收光,而光纖系統需離待測物7 mm高且掃動,因此光纖系統對於元件面積需求,相較於即時多角度量測光譜儀系統來的高。
    ;The paper focus on the studying of establishment and calibration the one-snap multi-angle spectroscopy optical system, and apply for organic light emitting diodes. The optical system is designed by the Afocal system, which makes establish the system simpler but also easier match magnification. Furthermore, the light of the analyte is collected by the object lens and expand the information of angle dimension. The space spectrum is limited by the system slit, and wavelength dimension is separated by the grating.
    First, we obtain that the wavelength corresponds to the pixel of Complementary Metal-Oxide-Semiconductor (CMOS) in the early of the establishment, and use the Lambertian source to confirm the imaging and the system wavelength. The wavelength calibration which uses three different wavelength laser (635 nm, 532 nm, 473 nm) and the mercury lamp (546.07 nm, 576.96 nm, 579.07 nm) incidence the optical system, and show that the system is linear in the wavelength dimension. Second, the angle calibration shows that the system is the cubic polynomial curve in the angle dimension, and wavelength independent. Finally, Industrial Technology Research Institute provide the high stability organic light-emitting diodes (OLED), which are used to correct the optical system intensity in this paper. The paper uses the red (NPB/TPB3:DCJTB/Alq3) and green (NPB /Alq3) OLED to confirm the intensity correction result and the accuracy.
    Moreover, the advantage of one-snap multi-angle spectroscopy optical system can be obtained from the experiment procedure, and the requirement of the element is less than the fiber system and the variable is less too. The one-snap multi-angle spectroscopy optical system is more convenient and fast, which can capture the image immediately (<1 s), compare to the fiber system, which needs the longer drive time. However, the way of the two system capture image is also different, and the spectroscopy optical system capture image directly the element attached to the objective lens. The fiber system must stay a certain height (7 mm) and sweep, therefore, it needs the larger element active area.
    There are two important points in this paper. First, the establishment step and the calibration. Second, provides a reproducible way to measure the spatial spectrum of OLED. This system can be applied not only to the spatial spectrum measurement of general OLED but also to the future research of spectral measurement of organic microcavity components, which is helpful for research in the organic laser.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明