近年鈣鈦礦太陽能電池蓬勃發展,憑藉其低製作成本、高效率等顯著優點,迅速成為太陽能電池領域的研究重點。其中又以正結構鈣鈦礦太陽能電池具備較傑出的光電轉換效率,但元件量測上普遍存在J-V遲滯現象,造成太陽能電池在量測時因正逆掃曲線不吻合,嚴重降低電池效率量測的不準確性。 本論文利用水熱法合成高純度銳鈦礦(anatase)二氧化鈦奈米顆粒,並透過調控高壓釜之反應操作條件,合成出不同的粒徑之二氧化鈦奈米粒子,以此探討二氧化鈦介孔層對正結構鈣鈦礦太陽電池的影響,並搭配二流體化噴塗高溫裂解方式製備二氧化鈦緻密層與透過鋰鹽(LiTFSI)摻雜優化二氧化鈦介孔層,提高電子傳遞效率,有效降低正結構鈣鈦礦太陽能電池於量測中的遲滯現象。本研究最佳條件是以粒徑22 nm的二氧化鈦粒子所製備之光電元件,其光電轉換效率達逆掃值18.46%、正掃值16.37%,且遲滯因子僅0.092。 另外再以正結構全網印介觀鈣鈦礦太陽能電池系統搭配不同粒徑二氧化鈦作驗證,其結果與標準正結構趨勢相符,證明電子傳輸層中二氧化鈦粒徑是影響正結構鈣鈦礦太陽能電池光電轉換特性之關鍵。透過提高二氧化鈦介孔層比表面積能有效提高鈣鈦礦層與二氧化鈦介孔層的接觸面積,使光生電子傳遞更快速。此系統以粒徑22 nm二氧化鈦奈米粒子所製備的元件有最佳效率表現,其電池優化後效率達10.86%,並於室溫環境下經過450小時仍穩定維持在10.16%,仍保有原始效率96%。 ;In recent years, organic–inorganic perovskite based solar cells have got sub-stantial attention due to their low fabrication cost and excellent photovoltaic properties. Although the power conversion efficiency of the perovskite solar cells have achieved over than 20%, anomalous hysteresis in current–voltage curves remain as major challenge, which cause inaccuracy of the PCE measurements. In this work, we use hydrothermal method to synthesize high purity anatase titanium dioxide nanoparticles by controlling the reaction conditions of the auto-clave. We investigate the particle size effect of titanium dioxide mesoporous layer on conventional mesoscopic perovskite solar cells, and with spray pyroly-sis deposition method to prepare titanium dioxide dense layer and through the lithium (LiTFSI) doping to optimize titanium dioxide mesoporous layer, im-prove the efficiency of electronic transmission and reduce the hysteresis of the conventional mesoscopic perovskite solar cells in the measurement effectively. The best performance of the cells is 22 nm particle size, its power conversion ef-ficiency of reverse scan is up to 18.46%, forward scan is 16.37%, and the hyste-resis index is decrease to 0.092. In addition, we verify the particle size effect of titanium dioxide mesoporous by the system of fully printable mesoscopic perovskite solar cells, the results are match to the conventional structural tendency. It is proved that the particle size of titanium dioxide in the electron transport layer is the key to the photoelectric conversion characteristics of the conventional structure perovskite solar cells. In-creasing the specific surface area of titanium dioxide mesoporous layer improves the contact area between the perovskite layer and the titanium dioxide mesopo-rous layer effectively. The rate of the electron injection from perovskite into tita-nium dioxide becomes faster, resulting in higher injection quantum efficiency after the electron-hole separation. This system has the best performance of the components prepared with 22 nm particle size of titanium dioxide, the efficiency of cells up to 10.86% after optimization. It is stable for 450 hours in ambient air and still retain 96% of original efficiency.