English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625159      線上人數 : 1886
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74819


    題名: Mining typical transactions from transaction databases
    作者: 楊雅純;Yang, Ya-Chun
    貢獻者: 資訊管理學系
    關鍵詞: K-medoids;Balanced K-means;Genetic Algorithm;Transaction Database;K-medoids;Balanced K-means;Genetic Algorithm;Transaction Database
    日期: 2017-08-18
    上傳時間: 2017-10-27 14:41:03 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著數位化時代的來臨,資料量暴增導致資訊過載,對於日理萬機的高階主管,要在短時間內消化大量資料,並且在對的時間,給予對的行銷方案實屬難事,為了解決資訊過載的問題,本研究提出了摘要化交易資料庫的演算法,在眾多資料中找出最具有代表性的交易資料,以減少資訊閱讀的時間。期望協助高階主管進行快速決策,讓高階主管可以使用少數具有高度可讀性的代表資料,來窺探整體線上交易零售資料庫,以快速得知整體的銷售概況。
    本篇研究使用K-medoids、Balanced K-means以及Genetic Algorithm演算法運算,找出最能代表線上交易零售資料庫的交易紀錄,並且比較三者的總成本,而總成本是由代表成本及代表不平均成本組成,最後期望以Genetic Algorithm,來改善使用K-medoids運算時的代表問題,在降低代表成本的同時,也提高代表性。;With the digital generation coming, the data has been explosive growth and causes the information overloading. For a senior manager, it is hard to digest so much data and make a right marketing decision in right time. In order to resolve the problem of information overloading, this research provide an algorithm of transaction data reduction. It can reduce the time of searching the information by discovering the most representative data from the large data set. We expect to help senior managers to make the decision more efficiently.
    With making good use of those representative data, they can see whole the online transaction retail database and realize the basic facts of all the sales in the short time.
    This research will adopt the K-medoids, Balanced K-means and Genetic Algorithm to discover the most representative transaction data from the online transaction retail database. We will also compare the total cost of the three algorithm which is composed of representative cost and representative imbalanced cost. We propose the Genetic Algorithm can improve the representative problem, which is able to reduce the representative cost and also improve the representative of the data.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML276檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明