English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67783/67783 (100%) Visitors : 23107920      Online Users : 227
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/74946

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/74946`

 Title: ZCm 的理想環生成元個數之上限;An Upper Bound for the Number of Generators of an Ideal in ZCm Authors: 鄭至人;Cheng, Chih-Ren Contributors: 數學系 Keywords: 整數群環;廣義歐幾里德;半局部環;穩定秩;integral group ring;generalized Euclidean;semilocal ring;stable rank Date: 2017-07-14 Issue Date: 2017-10-27 16:12:41 (UTC+8) Publisher: 國立中央大學 Abstract: 在1966年，P. M. Cohn 受到佈於歐幾里德環的可逆矩陣可以用基本方陣列簡化為單位矩陣這個性質的啟發，介紹了廣義歐幾里德環的概念。在1984年，Dennis、Magurn 與 Vaserstrin 證明有限循環群Cm的整數群環ZCm是廣義歐幾里德環。已知廣義歐幾里德環是quasi-歐幾里德環且quasi-歐幾里德環是廣義歐幾里德環。本文中，對於非明顯交換群G，我們建構一個ZG的有限生成非主理想環來證明ZG既不是歐幾里德環也不是quasi-歐幾里德環，並且給出ZCm的理想環生成元個數之上界。特別是當m為一個質數的次方時，我們給出更嚴謹的上界。在最後一章裡，藉由Wedderburn-Artin 定理，我們會用一個比Bass的證明更容易理解的方式來證明：半局部環的穩定秩為一，所以它是廣義歐幾里德環。;In 1966, P. M. Cohn introduced the concept of a generalized Euclidean ring, inspired by the property that any invertible matrix over a Euclidean ring can be row-reduced to the dentity matrix by elementary matrices. In 1984, Dennis, Magurn and Vaserstein proved that the integral group ring ZCm of finite cyclic group Cm is generalized Euclidean.It is well known that a Euclidean ring is quasi-Euclidean and a quasi-Euclidean ring is generalized Euclidean. In this thesis, we construct a fi nitely generated nonprincipal ideal of ZG for nontrivial abelian group G to show that ZG is neither Euclidean nor quasi-Euclidean. Moreover, we give an upper bound for the number of generators of an ideal in ZCm. The case m being a power of a prime is treated more seriously. In the final chapter, following the Wedderburn-Artin Theorem, we give a more accessible proof than Bass′ to show that a semilocal ring has stable rank one, hence it is a generalized Euclidean ring. Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML223View/Open