English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41627163      線上人數 : 2172
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74967


    題名: 應用於儲能系統之智慧型太陽光電功率平滑化控制;Intelligent PV Power Smoothing Control with Energy Storage System
    作者: 趙若妤;Chao, Jo-Yu
    貢獻者: 電機工程學系
    關鍵詞: 太陽能發電廠;電池儲能系統;磷酸鋰鐵電池;功率平滑化控制;非對稱歸屬函數之機率模糊類神經網路;電池電量狀態;Photovoltaic (PV);battery energy storage system (BESS);LiFePO4 battery;power smoothing control;probabilistic fuzzy neural network with asymmetric membership function (PFNN-AMF);state of charge (SOC)
    日期: 2017-08-18
    上傳時間: 2017-10-27 16:13:25 (UTC+8)
    出版者: 國立中央大學
    摘要: 由於太陽光電系統易受照度及溫度等環境因素影響而造成瞬間能量變化大,若大量併入市電系統,將影響電網的可靠度與穩定度。因此,本論文提出以非對稱歸屬函數之機率模糊類神經網路為架構之智慧型控制應用於磷酸鋰鐵電池儲能系統,目的為減緩太陽光電輸出至電網的功率波動。於此控制策略中,太陽光電實際輸出功率與平滑後輸出功率之間的差值將由電池儲能系統提供。論文中將詳細介紹非對稱歸屬函數之機率模糊類神經網路之架構與線上學習法則,並證明其收斂性。除此之外,在電池能量管理方面利用庫倫積分法實現電池電量狀態的估測,以避免電池過度充放電。根據再生能源導入電網實功率波動之規範,本研究所提之非對稱歸屬函數之機率模糊類神經網路明顯減緩太陽光電輸出功率波動,以提高電網之可靠度與穩定度。此外,與其他平滑控制方法相比,本論文透過非對稱歸屬函數之機率模糊類神經網路之控制實現既符合規範並且使所需電池容量最小化之目的。最後,利用模擬與實驗結果驗證所提功率平滑控制應用於電池儲能系統在不同照度變化情況下之成效。;As a major problem for integrating photovoltaic (PV) power plant to the grid, power fluctuations lead to poor power quality. A possible solution for regulating the intermittent output power of a PV power plant is to integrate a battery energy storage system (BESS). Therefore, an intelligent PV power smoothing control using probabilistic fuzzy neural network with asymmetric membership function (PFNN-AMF) is proposed to mitigate the fluctuation of PV output power directly fed to the grid. Moreover, the network structure of the PFNN-AMF and its online learning algorithms are described in detail. In addition, the state of charge (SOC) estimation using Coulomb counting method is adopted in the energy management of battery. According to the grid active power fluctuation limits set in this study, the proposed method is capable of mitigating the fluctuation of PV output power to improve reliability and stability of the grid. Furthermore, comparing to the other smoothing methods, a minimum energy capacity of the BESS with a small fluctuation of the grid power can be achieved by the PV power smoothing control using PFNN-AMF. Finally, the experimental results of various PV variation sceneries are realized to validate the effectiveness of the proposed intelligent PV power smoothing control.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML365檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明