English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119879      線上人數 : 1381
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/75871


    題名: 飛秒雷射直寫技術應用於SU8與其複合材料之微結構製作與檢測;Fabrication and Characterization of Microstructures Initiated Using Femtosecond Laser Direct Write from SU8 and Its Composites
    作者: 張寶瑩;Yin, Chong Poh
    貢獻者: 光機電工程研究所
    關鍵詞: 雷射直寫;雙光子吸收;飛秒雷射;負光阻SU8;複合材料;Laser direct writing;two-photon absorption;femtosecond laser;negative photoresist SU8;composite material
    日期: 2018-01-04
    上傳時間: 2018-04-13 11:01:03 (UTC+8)
    出版者: 國立中央大學
    摘要: 雙光子吸收是一種非線性光學現象,可以用高尖峰強度的緊聚焦光束來實現。相互作用區域局限於極其局部的焦點體積。本研究旨在探討負型光阻SU8的雙光子聚合。利用波長740 nm的鈦寶石雷射為能量源引發雙光子吸收,進而導致SU8的聚合。SU8的雙光子聚合本質上是累積效應,因為體素會隨著曝光時間的增加變大。SU8結構線寬對掃描速度和雷射功率呈現對數性的依賴關係。解析度取決於雷射功率和掃描速度,這很大程度上取決於光起始劑的效率。本研究達到了80 nm的最小線寬。結構的附著力受到圖案設計的影響。沒有足夠的機械支撐,這些結構在顯影階段無法承受沖洗力。
    本研究使用SU8和銅前驅物,包括硝酸銅和氯化銅,來開發複合材料。由於良好的導電性和成本效益,銅被選擇為填充材料。合成的複合溶液是藍色且均勻的,可將其旋塗在基材上以形成均勻的薄膜。飛秒雷射的照射引發雙光子吸收,導致SU8的聚合,銅離子的還原和銅顆粒的燒結。掃描速度會影響表面形態,因為掃描速度太慢會導致熱能積累和燒蝕。複合結構的線寬取決於雷射功率。隨著掃描速度增加,複合結構的電阻降低,直到達到最佳掃描速度。另一方面,隨著激光功率的增加,線寬增加而電阻減小。本研究達到的導電率為365.50 S/m,遠高於導電率為10-14 S/m的純SU8。
    ;Two-photon absorption is a nonlinear optical phenomenon which can be realized with a tightly focused beam with high peak intensity. The interaction region is limited to an extremely localized focal volume. In this study, two-photon polymerization of negative tone photoresist, SU8 is investigated. Titanium sapphire femtosecond laser at 740 nm is used as energy source to induce two-photon absorption which in turn leads to polymerization of SU8. Two-photon polymerization of SU8 is accumulative in nature, as bigger voxel is obtained with increased exposure time. Line width of SU8 structures demonstrate logarithmic dependence on scanning speed and laser power. Resolution is determined by laser power and scanning speed, which is greatly dependent on efficiency of photoinitiator. A minimum line width of 80 nm is achieved in this study. Adhesion of structures is influenced by pattern design. Without sufficient mechanical support, these structures are unable to withstand rinsing forces during development stage.
    Composite material is developed using SU8 and copper precursors, particularly copper (II) nitrate tyihydrate and copper (II) chloride dihydrate. Copper is selected as filler material due to excellent electrical conductivity and cost effectiveness. Blue, homogenous composite solution is synthesized, which can be spin coated on substrate to create a uniform thin film. Irradiation of femtosecond laser induces two-photon absorption that leads to polymerization of SU8, reduction of copper ions and sintering of copper particles. Surface morphology is affected by scanning speed, as low scanning speed subsequently leads to accumulation of heat energy and ablation. Line width of composite structure is determined by laser power. Electrical resistance of the composite structures decreases with scanning speed until optimum scanning speed is achieved. On the other hand, as laser power increases, line width increases while resistance decrease. Electrical conductivity of 365.50 S/m is achieved, which is a leap of advancement as compared to pure SU8 with conductivity of 10-14 S/m.
    顯示於類別:[光機電工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML337檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明