English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23194490      Online Users : 755
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77463

    Title: 利用自動對焦改善子孔徑相位拼接演算法之研究;Improvement of Subaperture Phase-Stitching Algorithm by Autofocus
    Authors: 王文慶;Wang, Wen-Ching
    Contributors: 照明與顯示科技研究所
    Keywords: 子孔徑接合;掃描式白光干涉儀;自動對焦;Subaperture Stitching;White-light Scanning Interferometry;autofocus
    Date: 2018-08-14
    Issue Date: 2018-08-31 14:44:00 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著科技的發展,各項產品及設備中所使用的光學元件如反射鏡、各類型的透鏡、稜鏡、分光鏡…等等均被廣泛的使用,而光學元件的品質會直接影響一個光學系統的好壞,因此檢驗光學元件的技術就顯得相當的重要。
    ;With the development of technology, optical components such as mirrors, various types of lenses, prisms, beam-splitters, etc. are widely used in various products and equipment, and the quality of optical components directly affects the quality of an optical system. Therefore, the technology for testing optical components is quite important.
    In this paper, scanning white light interference technology is used to scan and record the intensity of the interference signal, and the interference intensity is converted into phase information through mathematical calculation. Then, the subaperture phase stitching technology is used to optical. The surface of the component is restored. In the process, in order to measure the phase information of multiple regions, the position of the component to be tested needs to be moved, and this step will cause the interference signal to disappear, which requires manual adjustment, but the adjustment process cannot be accurate. The adjustment may cause errors or even loss of phase information restored after scanning.
    Therefore, this study introduces a passive autofocus algorithm, based on the mathematical operation of edge detection, with the electronic platform of vertical movement, records the image intensity, calculates the focus value, and automatically found. After comparing the data of the lens LA-1708, the curvature radius error calculated by manual focus is 2.79%, and the error of the radius of curvature calculated by autofocus reduced to 1.45%, which can effectively reduce the error caused by artificial adjustment.
    Appears in Collections:[照明與顯示科技研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明