中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77568
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41649308      Online Users : 1367
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77568


    Title: 基於改良式粒子群演算法之永磁同步馬達控制器設計;Design of Permanent Magnet Synchronous Motor Controller Based on Improved Particle Swarm Optimization
    Authors: 陳威融;CHEN, WEI-JUNG
    Contributors: 電機工程學系
    Keywords: 粒子群演算法;馬達驅動控制
    Date: 2018-06-26
    Issue Date: 2018-08-31 14:48:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文提出了一個改良式的粒子群演算法,稱為排名切換式粒子群演算法(Rank Switching Self-Learning Particle Swarm Optimization, RSLPSO),利用排名機制及切換機制,來選擇粒子在每個迭代時期最適合的更新公式,有效的加快粒子的收斂速度,並且將低了運算量,並加入了學習機制,讓粒子之間的交流可以更頻繁,有效的做經驗交流,增加粒子的多樣性,使得粒子不易落入區域最佳解中。本論文使用16個測試函數來測試提出的改良式粒子群演算法的效能,而測試結果顯示,本論文所提出的改良法能夠在大部分的測試函數下表現優異,最後應用在交流馬達控制器的參數搜索,及時的找到馬達在每個取樣時間所需要的最佳控制器參數,來提升馬達的運動表現,而從馬達的響應圖中可以分析出使用本論文所提出的粒子群演算法可以有效的找到最佳的控制器參數。;This thesis proposes an improved particle swarm algorithm called Rank Switching Particle Swarm Optimization (RSLPSO), which uses a ranking mechanism and a switching mechanism to select the suitable update formula at each iteration time, effectively speed up the convergence of particles, and will reduce the amount of computation, and add a learning mechanism, so that communication between particles can be more frequent, effective experience exchanges, increase the diversity of particles, making particles not easily fall into the local optimum. In this dissertation, 16 test functions are used to test the performance of the proposed improved particle swarm algorithm. The test results show that the improved method proposed in this paper can perform well under most of the test functions. Finally, it is applied to the parameter search of the AC motor controller to find the best controller parameters needed by the motor at each sampling time in order to improve the motor′s performance. From the motor′s response graph, it can be analyzed the proposed particle swarm algorithm can effectively find the best controller parameters.
    Appears in Collections:[Graduate Institute of Electrical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML136View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明