English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78728/78728 (100%)
造訪人次 : 33561264      線上人數 : 796
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/77629


    題名: 應用於X頻段與Ka頻段系統之圓極化天線陣列設計;Design of Circular Polarization Antenna Array for X-band and Ka-band Systems
    作者: 林儀禎;Lin, Yi-Chen
    貢獻者: 電機工程學系
    關鍵詞: 圓極化陣列;28GHz
    日期: 2018-07-20
    上傳時間: 2018-08-31 14:50:41 (UTC+8)
    出版者: 國立中央大學
    摘要: 第五代行動通訊將會使用較高之頻段,其有高資料率、天線面積小等優點。但在高頻傳播時空氣損耗也會比較大,因此可以使用天線陣列提高增益,減少損耗造成的影響。
    通常天線陣列中陣列因子在每個天線單元功率平均分布時會有最大方向性。本論文利用等效電路,估算若利用傳輸線調整輸入天線功率使其平均分佈會造成之損耗,評估功率平均分布之可行性。本論文實現一線極化網格天線陣列以及圓極化貼片天線陣列,網格天線陣列傳統上具有匹配電阻,本論文將電阻拔除改由天線取代。圓極化貼片天線陣列則是將線極化輻射單元更改為右手圓形偏極化貼片天線設計而成,此陣列使用循序旋轉技術將部份天線旋轉增加軸比頻寬。28 GHz版本使用使用國家晶片系統設計中心提供之RO-FR4複合四層板製程製作,10 GHz版本使用RO5880板材製作。
    量測結果28 GHz及10 GHz線極化陣列天線量測頻寬分別為5.5% 和1.8%,而增益分別為7.2 dBi和12.9 dBi。28 GHz及10 GHz圓極化天線陣列量測頻寬分別為2.7% 和2.6%,軸比頻寬為1.1% 和2.3%,增益為7.3 dBic和13.6 dBic。
    ;The fifth-generation mobile communication is likely to use higher frequency bands which have advantages such as high data rate and small antenna size. Nevertheless, the path-loss during high-frequency propagation will also be relatively large. Therefore, the antenna array can be used to increase the gain and reduce the impact of the loss.

    The array factor in the antenna array will have a maximum value of directivity when antenna is excited uniformly. This thesis uses the equivalent circuit to estimate the loss of the transmission line to adjust the input antenna power to achieve uniform-distributed elements. To evaluate the feasibility of the average power distribution. In this thesis, a linearly polarized grid antenna array and a circularly polarized patch antenna array are realized. Grid antenna arrays traditionally have matching resistor. In this thesis, the resistance is replaced by an antenna. The circularly polarized patch antenna array is designed by changing the linearly polarized radiation element to a right-hand circularly polarized patch antenna. This array uses sequential rotation technology to rotate some of antennas and increase the axial ratio bandwidth. The 28-GHz antenna arrays use the RO-FR4 composite four-layer board process provided by the National Chip Implementation Center. The 10-GHz version uses RO5880 PCB.
    The measured bandwidths of the 28-GHz and 10-GHz linearly polarized array antennas are 5.5% and 1.8%, respectively, and the gains are 7.2 and 12.9 dBi, respectively. The measured bandwidths of the 28-GHz and 10-GHz circularly polarized antenna arrays are 1.8% and 2.6%, respectively, the axial ratio bandwidths are 1.1% and 2.3%, and the gains are 7.3 and 13.6 dBic respectively.
    The fifth-generation mobile communication is likely to use higher frequency bands which have advantages such as high data rate and small antenna size. Nevertheless, the path-loss during high-frequency propagation will also be relatively large. Therefore, the antenna array can be used to increase the gain and reduce the impact of the loss.

    The array factor in the antenna array will have a maximum value of directivity when antenna is excited uniformly. This thesis uses the equivalent circuit to estimate the loss of the transmission line to adjust the input antenna power to achieve uniform-distributed elements. To evaluate the feasibility of the average power distribution. In this thesis, a linearly polarized grid antenna array and a circularly polarized patch antenna array are realized. Grid antenna arrays traditionally have matching resistor. In this thesis, the resistance is replaced by an antenna. The circularly polarized patch antenna array is designed by changing the linearly polarized radiation element to a right-hand circularly polarized patch antenna. This array uses sequential rotation technology to rotate some of antennas and increase the axial ratio bandwidth. The 28-GHz antenna arrays use the RO-FR4 composite four-layer board process provided by the National Chip Implementation Center. The 10-GHz version uses RO5880 PCB.
    The measured bandwidths of the 28-GHz and 10-GHz linearly polarized array antennas are 5.5% and 1.8%, respectively, and the gains are 7.2 and 12.9 dBi, respectively. The measured bandwidths of the 28-GHz and 10-GHz circularly polarized antenna arrays are 1.8% and 2.6%, respectively, the axial ratio bandwidths are 1.1% and 2.3%, and the gains are 7.3 and 13.6 dBic respectively.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML159檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明