English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42118538      線上人數 : 949
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/77762


    題名: 利用智慧型控制配電型靜態同步補償器(DSTATCOM)改善電力品質及直流鏈電壓調控;Intelligent Controlled DSTATCOM for Power Quality Improvement and DC-Link Voltage Regulation
    作者: 蔡詔揚;Tasi, Chao-Yang
    貢獻者: 電機工程學系
    關鍵詞: 靜態同步補償器;電力品質;直流鏈電壓控制;虛功補償;總諧波失真;非對稱歸屬函數之補償模糊類神經網
    日期: 2018-08-21
    上傳時間: 2018-08-31 14:55:17 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文提出一配電型靜態同步補償器來改善非線性與線性負載造成之電流諧波與功率因數等電力品質問題。另一方面,由於功率流進或流出配電型靜態同步補償器之直流鏈側的電容,會造成直流鏈電壓的波動。因此,配電型靜態同步補償器之直流鏈電壓控制在負載變動情況下尤其重要。本論文為了改善電力品質與有效地維持直流鏈電壓在非線性與線性負載變動情況下,提出一新式非對稱補償模糊類神經網路(CFNN-AMF)控制器取代傳統比例積分(PI)控制器。本論文所提出的非對稱補償模糊類神經網路(CFNN-AMF),其補償層參數整合了CFNN模糊系統中的悲觀與樂觀運算。並且,在歸屬函數層的維度採用非對稱(AMF)的方式以優化模糊規則與提升網路學習能力的最佳化。此外,本論文將詳細介紹CFNN-AMF的網路架構與線上學習法則。最後,以實驗結果驗證使用CFNN-AMF之配電型靜態同步補償器在非線性與線性負載變動情況下改善電力品質與維持直流鏈電壓之有效性與可行性。;A distribution static compensator (DSTATCOM) is proposed to improve power quality, including the grid current harmonic and power factor, resulted from the nonlinear and linear loads. On the other hands, since the instantaneous power following into or out of the DC-link capacitor on the DC side of the DSTATCOM, a sudden load change may cause a serious DC-link voltage fluctuation across the dc capacitor. Hence, the DC-link voltage regulation control of the DSTATCOM is important especially under load variation. In this study, to improve the power quality and keep the DC-link voltage of the DSTATCOM constant under variation of nonlinear and linear loads effectively, the traditional proportional-integral (PI) controller is substituted with a novel online trained compensatory neural fuzzy network with an asymmetric membership function (CFNN-AMF) controller. In the proposed CFNN-AMF, the compensatory parameter to integrate pessimistic and optimistic operations of fuzzy systems is embedded in the CFNN. Moreover, the dimensions of the Gaussian membership functions are directly extended to AMFs for the optimization of the fuzzy rules and the upgrade of learning ability of the networks. Furthermore, the network structure and online learning algorithms of the proposed CFNN-AMF are introduced in detail. Finally, the effectiveness and feasibility of the DSTATCOM using the proposed CFNN-AMF controller for the improvement of power quality and maintaining the constant DC-link voltage under nonlinear and linear load change have been demonstrated by some experimental results.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML238檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明