摘要: | 假設 A = [a_{ij}]_{i,j=1}^{n} 並且 A′ 是的加權移位矩陣的權重 a_{i,i+1} 對所有 i = 1,...,n
我們知道定理3.1 [1] 的 w(A) ≥ w(A′)。 在這篇論文中,我們考慮何時等式 w(A)= w(A)′ 成立。 在本論文中,我們得到了一些 w(A)= w(A′) 意味著 A = A′ 的矩陣A。 我們證明 (1) 如果 A 是一個非負矩陣,則 w(A)= w(A′) 若且唯若 A = A′, (2) 如果 A 是一個 Toeplitz 矩陣,則 w(A) = w(A′) 若且唯若 A = A′,以及 (3) 如果 A 是循環矩陣,則 w(A)= w(A′)若且唯若 A = A′。
請注意,A′ 是一個加權移位。 如果 A′ 具有週期性非零權重,我們還考慮何時等式 w(A)= w(A′) 成立。 我們首先研究 A′ 的權重的週期是一。 給出了等式 w(A)= w(A′) 的充分必要條件。 接下來,我們關注 A′ 的權重的週期是偶數。 我們證明,如果 w(A)= w(A′),那麼A是整體可分解的。 最後,本文還考慮了 A′ 的權重週期為奇數的情況。
;Let A=[a_ij]_(i,j=1)^n and A′ be a weighted shift matrix of weights {a_i,i+1} for all i=1,...,n
We know that w(A)≥w(A′) by Proposition 3.1{1}. In this thesis, we consider when the equality w(A)=w(A′) holds. In this thesis, we obtain some classes of matrices A for which w(A)=w(A′) implies A=A′. We show that (1) if A is a non-negative matrix, then w(A)=w(A′) if and only if A=A′, (2) if A is a Toeplitz matrix, then w(A)=w(A′) if and only if A=A′, and (3) if A is a circulant matrix, then w(A)=w(A′) if and only if A=A′.
Note that A′ is a weighted shift. We also consider when the equality w(A)=w(A′) holds if A′ has periodic nonzero weights. We first study the period of weights of A′ is one. The sufficient and necessary condition of the equality w(A)=w(A′) is given. Next, we concerned with the period of weights of A′ is even. We show that if w(A)=w(A′), then A is unitarily reducible. Finally, the case that the period of weights of A′ is odd is also considered in this thesis. |