English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21605110      Online Users : 234
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77828

    Title: 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬;Numerical Simulation of Unsteady Complex Flows Using an Artificial Compressibility-Immersed Boundary Method with Direct Forcing
    Authors: 張益豪;Chang, Yi-Hao
    Contributors: 數學系
    Keywords: 不可壓縮納維爾-史托克方程;流固耦合;人造壓縮性法;沉浸邊界法;直接施力法;incompressible Navier-Stokes equations;fluid-solid interaction;artificial compressibility method;immersed boundary method;direct-forcing method
    Date: 2018-07-20
    Issue Date: 2018-08-31 14:58:39 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文的主要目的是實現文獻[22]所提出的一種人造壓縮性直接施力沉
    固耦合問題可以取得相當合理的數值結果。;The main purpose of this thesis is to implement an artificial compressibility-immersed boundary method with
    direct forcing proposed in [22] for simulating 2-D unsteady flows interacting with rigid solid objects.
    This approach is based on the artificial compressibility method and the direct-forcing immersed boundary method combined with a prediction-correction strategy.
    Following the ideas in [22], we employ the penalty technique to weaken the incompressibility condition in the incompressible Navier-Stokes equations and introduce a virtual force distributed on the whole solid object and imposed to the fluid momentum equations to accommodate the no-slip boundary condition at the immersed solid boundary. We then use the first-order implicit Euler scheme to discretize the temporal variable in the resulting system of equations and apply the explicit first-order approximation to linearize the nonlinear convection term. After that, we employ a direct forcing immersed boundary method with a prediction-correction strategy to solve the system of time-discretized equations. For the spatial discretization in this approach, we take the second-order central differences on the staggered grids. We illustrate the performance of the algorithm by performing several 2-D numerical experiments of unsteady flow interacting with solid object. From the numerical results, we find that this simple artificial compressibility immersed boundary method with direct forcing can achieve reasonable results for 2-D fluid-solid interaction problems.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明