English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75533/75533 (100%)
Visitors : 27246998      Online Users : 717
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7881

    Title: 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性;Global Existence of Weak Solutions to the Initial-Boundary Value Problem of Inhomogeneous Hyperbolic Systems of Conservation Laws
    Authors: 蘇萾欽;Ying-Chin Su
    Contributors: 數學研究所
    Keywords: Lax方法;邊界黎曼問題解;擬線性波方程;黎曼問題;雙曲平衡律系統;廣義Glimm方法;generalized Glimm scheme;quasilinear wave equations;hyperbolic systems of balance laws;Lax method;boundary Riemann problem;Riemann problem
    Date: 2008-07-08
    Issue Date: 2009-09-22 11:08:00 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在本論文中,我們提供廣義的Glimm scheme來研究具有source項的2×2雙曲守恆律系統初始邊界值問題之整域弱解的存在性。由於source項的結構,我們推廣在[10,13]中所創造的方法來構造黎曼與邊界黎曼兩問題的弱解,而這樣的弱解正好能藉由Glimm scheme來做為構成近似解的要素。藉著修正在[7]的結果及證明residual的弱收斂,我們證實了scheme的相容性與穩定性。此外我們也研究擬線性波方程類之初始邊界值問題的整域Lipschitz連續解的存在性。應用Lax的方法及廣義Glimm方法,我們造出靠近邊界的初始邊界黎曼問題和遠離邊界的擾動離曼問題的近似解,經由證明近似解之residual的弱收斂,我們證實解的導數之整域存在性,進而得到問題的整域Lipschitz連續解的存在性。 In this article we provide a generalized version of Glimm scheme to study the global existence of weak solutions to the initial-boundary value problem of 2 by 2 hyperbolic systems of conservation laws with source terms. Due to the structure of source terms, we extend the methods invented in [10,13] to construct the weak solutions of Riemann and boundary Riemann problems, which can be dopted as a building block of the approximate solution by Glimm scheme. By modifying the results in [7] and showing the weak convergence of residuals, we establish the stability and consistency of scheme. In addition we investigate the existence of globally Lipschitz continuous solutions to a class of initial-boundary value problem of quasilinear wave equations. Applying the Lax method and generalized Glimm scheme, we construct the approximate solutions of initial-boundary Riemann problem near the boundary and perturbed Riemann problem away the boundary. By showing the weak convergence of residuals for the approximate solutions, we establish the global existence for the derivatives of solutions and obtain the existence of global Lipschitz continuous solutions of the problem.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明