English  |  正體中文  |  简体中文  |  Items with full text/Total items : 76531/76531 (100%) Visitors : 29715316      Online Users : 483

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/7887`

 Title: 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解;The Construction of Local Approximate Solutions to The Cauchy Problem of Compressible Euler Equations in Transonic Flow. Authors: 賴家駿;Chia-chun Lai Contributors: 數學研究所 Keywords: 對接近音速流量;可壓縮尤拉方程式;黎曼問題.;hyperbolic systems of conservation laws.;transonic flow;Riemann problem;operator splitting method;Compressible Euler equations Date: 2007-06-28 Issue Date: 2009-09-22 11:08:10 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 在這篇文章我們考慮尤拉方程式在接近音速流量無變化可壓縮的管，在方程式出現的壓力項和管的位置有關。我們對這柯西問題的方程式，去架構一個區間的逼近解，這個逼近解是由黎曼問題的基本波和線性化方程式的逼近解所組合架構，線性化方程式的逼近解藉由使用”operator splitting”來架構。 In this paper we consider the compressible Euler equations of uniform duct in transonic flow. The pressure term appearing in the equations is also dependent on the location of the duct, which is considered as the product of the density of flow and a function of space. We construct a local approximate solution for the Cauchy problem of equations. This approximate solution is constructed as a combination of homogeneous elementary waves to the Riemann problem and an approximate solution of the linearized equations. The approximate solution of the linearized equations is constructed by the scheme of the operator splitting. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File SizeFormat