中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7887
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41670196      線上人數 : 1607
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7887


    題名: 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解;The Construction of Local Approximate Solutions to The Cauchy Problem of Compressible Euler Equations in Transonic Flow.
    作者: 賴家駿;Chia-chun Lai
    貢獻者: 數學研究所
    關鍵詞: 對接近音速流量;可壓縮尤拉方程式;黎曼問題.;hyperbolic systems of conservation laws.;transonic flow;Riemann problem;operator splitting method;Compressible Euler equations
    日期: 2007-06-28
    上傳時間: 2009-09-22 11:08:10 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 在這篇文章我們考慮尤拉方程式在接近音速流量無變化可壓縮的管,在方程式出現的壓力項和管的位置有關。我們對這柯西問題的方程式,去架構一個區間的逼近解,這個逼近解是由黎曼問題的基本波和線性化方程式的逼近解所組合架構,線性化方程式的逼近解藉由使用”operator splitting”來架構。 In this paper we consider the compressible Euler equations of uniform duct in transonic flow. The pressure term appearing in the equations is also dependent on the location of the duct, which is considered as the product of the density of flow and a function of space. We construct a local approximate solution for the Cauchy problem of equations. This approximate solution is constructed as a combination of homogeneous elementary waves to the Riemann problem and an approximate solution of the linearized equations. The approximate solution of the linearized equations is constructed by the scheme of the operator splitting.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明