中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/79640
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41639535      Online Users : 1303
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/79640


    Title: A note on inhomogeneous Triebel-Lizorkin space associated with sections
    Authors: 林靖容;Lin, Jing-Rong
    Contributors: 數學系
    Keywords: Triebel-Lizorkin space;sections
    Date: 2019-01-14
    Issue Date: 2019-04-02 15:09:53 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在這篇文章中,我們討論R^n上特定的section,就是固定x為中心、以√t為半徑的球體B(x,√t),其勒貝格測度等價於t^(n/2),因此可以考慮關於此section的非齊性F_pq^s (R^n ),當任意兩點x,y滿足|x-y|≥1時,Monge-Ampère奇異積分算子H有|D_0 HD_0 (x,y)|≤|x-y|^(-2)的條件,即可證明H在F_pq^s (R^n )上有界。;In this paper, we consider the special section on R^n, which is a ball centered at with radius √t, and the Lesbegue measure of this section is equivalent to t^(n/2). Then, define the inhomogenous Triebel-Lizorkin space F_pq^s (R^n ) associated with such sections, and show that the Monge-Ampère singular integral operator H is bounded on F_pq^s (R^n ) if |D_0 HD_0 (x,y)|≤|x-y|^(-2) for any x,y∈R^n,|x-y|≥1.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML219View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明