室內定位至今已發展有一段時間,有很多相關的研究像是場景辨識 以及導航,現有的深度學習定位方法需要大量附有正確相機位置的圖 像,這篇論文主要利用同時定位與建立地圖(SLAM)算法所生成的三 維地圖解決定位問題,我們使用投影方法從3D地圖生成訓練數據,此方 法可以產生在3D地圖中任何地方的圖像,並且帶有準確的位置訊息,我 們也結合了B-CNN[12]所形成的縮放地圖和深度學習解來決定位問題。;Indoor localization has been developed for many years. There are many related works like scene recognition and navigation. Existing deep learning positioning methods require a large number of images with the correct camera position. This paper mainly solves the positioning problem by using the 3D map produced from simultaneous localization and mapping (SLAM) algorithm. In our positioning work, we use the projection method to produce training data from the 3D map. This method can produce any place’s image in the 3D map included accurate position information. We also combined BCNN [12] to reach a ”zooming map” and deep learning to solve the positioning problem.