English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 44349095      線上人數 : 773
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/81140


    題名: 以Ensemble Model改善鏈結預測準確度;Improving Performance of Link Prediction with Ensemble Model
    作者: 顏微珊;Yen, Wei-San
    貢獻者: 資訊管理學系
    關鍵詞: 鏈結預測;相似度計算;整合模型;link prediction;similarity;ensemble model
    日期: 2019-06-19
    上傳時間: 2019-09-03 15:36:52 (UTC+8)
    出版者: 國立中央大學
    摘要: 鏈結預測 (Link Prediction) 廣泛地被應用在推薦系統、資訊檢索甚至是生物資訊等各個領域,其核心概念為找出實體之間的關聯,透過鏈結預測,可推敲出網絡的完整樣貌,例如找出網絡當中所遺失的鏈結 (Missing link),以及挖掘尚未被發現的網絡資訊。
    鏈結預測的研究多半以計算兩節點 (Nodes) 之間的相似度為主,其中計算相似度又可再細分為全域性指標 (Global information) 以及區域性指標 (Local information),雖然以 global information 為計算基礎的方法有較好的預測結果,因需搜尋網絡的全域資訊,有耗費過多資源的問題,而基於 local information 的做法簡單易用,可應用於現實生活中大型的社群網絡,卻因計算方法簡單,其預測結果較不理想。
    基於鏈結預測的這個議題,本篇論文利用 local information 複雜度低的優點,提出了以整合模型 (Ensemble Model) 結合常見的 local information 計算方法與分類器,針對不同預測強度的分類器給予相對應的權重,進而提升預測準度。實驗結果顯示 ensemble model 用於鏈結預測優於只計算單一 local information 的相似度,且與過去文獻當中的 global information 相比,Ensemble model 預測的 performance 並無顯著差異。;Link prediction has been widely used in the field of recommendation system, information retrieval and even biological information. The key concept in link prediction is to find the connections between two nodes. We can get the whole picture of networks through the study in link prediction, finding missing link and digging out the undiscovered information are both the instances.

    In link prediction, most of studies put the effort on similarity calculation among nodes in the network. In this area, calculation is divided into two measures: global information and local information. Although the measures based on global information have much better performance on prediction, they are time consuming more than the measures based on local information. Because of its simplicity, local information is suitable for using in large and complex network. As the network which are extracted from real life become more complex than it used to be, local information are actually more practical.

    Based on the advantage of local information in low complexity, this paper propose an ensemble model to combine both of common local information similarity and classifiers, giving different weights to each classifiers based on its predictive strength. Our experimental result shows that ensemble model can enhance the performance of link prediction which is better than using single local information similarity. Although ensemble model can’t completely outperform global information, the difference isn’t significant which means that we can use less computational resource to reach the acceptable performance.
    顯示於類別:[資訊管理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML139檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明