English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 23028305      Online Users : 104
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81281


    Title: 中文筆順預訓練效能之研究
    Authors: 黃晧誠;Huang, Hao-Cheng
    Contributors: 資訊管理學系
    Keywords: 預訓練;表徵;自然語言處理;中文;筆順;Pre-training;Representation;Natural language processing;Chinese;Stroke
    Date: 2019-07-19
    Issue Date: 2019-09-03 15:42:34 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 預訓練(Pre-training)在自然語言處理極為重要,然而中文在較新的自然語言處理 遷移學習研究較少,且多數是基於特徵及靜態嵌入方法之模型,因此本研究提出利用中 文更深層的特徵——筆順,納入輸入維度以學習子字元之特徵,並以近期提出基於特徵 方法 ELMo 及微調方法 BERT 的預訓練模型為基礎進行修改,試探討筆順對於中文預 訓練模型的影響,提出利用卷積類神經網路模型考量筆順特徵(Stroke)之 ELMo+S 及 BERT+S 模型。最後,使用下游任務 XNLI 及 LCQMC 資料集進行評估,結果顯示筆順 特徵對於這兩種預訓練模型並無明顯幫助。;Pre-training is extremely important in natural language processing. However, Chinese studies about transfer learning are less, and most of them are uesd features-based and static embedding methods. Therefore, this study proposes to use deeper features by Chinese- strokes, and integrates input dimensions to learn the characteristics of sub-characters based on the recent proposed pre-training model ELMO with feature-based method and BERT with fine-tuning method. We proposed the ELMo+S and BERT+S models which consider stroke features by the convolutional neural network. Finally, the results show that stroke features are not significantly helpful for these two pre-training models on the downstream task XNLI and LCQMC datasets.
    Appears in Collections:[資訊管理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML18View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明