English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23052599      Online Users : 265
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81333


    Title: A Novel NMF-Based Movie Recommendation with Time Decay
    Authors: 楊鈞元;Yang, Chun-Yuan
    Contributors: 資訊管理學系
    Keywords: 推薦系統;隱因子模型;矩陣分解;線性代數演算法;非線性代數演算法;recommendation system;latent factor model;matrix factorization;linear algebra algorithm;non-linear algebra algorithm
    Date: 2019-07-26
    Issue Date: 2019-09-03 15:45:08 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 現今最流行處理大量數據集的方法之一是矩陣分解(MF)技術,矩陣分解常用於在推薦系統中,因為其預測用戶興趣有著非常高的準確度。特別是非負值矩陣分解(NMF)已經被證明能夠非常有效利用多變量數據集的分解。然而即使是NMF技術,也無法完全捕捉到時間對於用戶喜好的影響程度。
    本研究利用使用者因為時間影響而對喜好的改變,我們提出兩個基於傳統NMF的創新推薦系統 Dec_NMF,透過有效的時間影響,考慮使用者對於喜好的改變。Dec_NMF 包含了人類喜好行為隨著時間改變的概念,考慮使用者目前喜好的偏好,並將評分時間過長的資訊做衰減的處理。
    本研究立用了三種線性以及三種非線性函數來調整評分,設定不同的潛在因素數量,透過均方誤差、均方根誤差、平均絕對誤差指標來評估模型好壞,並使用準確度、精密度、召回率與F1方法衡量模型的效能。實驗結果表明提出的方法中,在大部分的狀況優於傳統非負值矩陣分解。此外我們將所提出的模型應用在MovieLens資料集上,來演示所提出模型的有效性。
    ;One of the most popular approaches to handle very large datasets is matrix factorization(MF) technique. The MF method was commonly used in recommendation systems due to the precise prediction of the user’s interest. Especially one of the successful method Non-Negative Matrix Factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. NMF-based techniques, however, could not properly capture time influences on user preferences.
    In this paper, by considering time impacts on preferences, we propose two novel NMF-based recommendation system, Dec_NMF, to consider user preferences over time. Our proposed method extends the concept of the change of human interest through time to capture user’s current preference and reduce impacts which was rated from a long time ago. We adjust the rating using three different linear and three different non-linear time decay. Each function represents different decay degree of preferences to simulate the human’s interest behavior. The experimental results show that proposed methods outperforms the traditional MF and NMF model. Furthermore, we apply Dec_NMF on MovieLens datasets to demonstrate the effectiveness of Dec_NMF recommendation.
    Appears in Collections:[資訊管理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML31View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明