在本論文當中會探討850nm 波段及940nm 波段的垂直共振腔面射型雷射(VCSEL)的元件設計。此次實驗中的940nm VCSEL 元件方面,實現了最快紀錄的O-E 3dB 頻寬, 能夠在室溫及高溫85℃ 操作環境下出 40GHz/32GHz 的小訊號頻寬。同時我們也研究了3μm、6μm、8μm 三種不同的氧化孔徑下,在室溫的特性下也分別能達到:40GHz、38GHz、 33GHz 的小訊號頻寬。透過S11 S21 參數所建立的等效電路模型分析出不同尺寸氧化孔徑所展現出的本質頻寬,在3μm氧化孔徑的元件可以得到46.3GHz 的本質頻寬,這數字能夠非常接近我們所量測的3dB 頻寬(40GHz),有效證明我們透過了鋅擴散及氧化掏離技術所製作出的元件能夠釋放出元件的本質頻寬。透過通訊設備的量測傳輸,可以實現在1 公尺距離下使用OM5 光纖實現常溫60Gbit/sec 無誤碼(BER<1 × 10−12) ,且可以在常溫及高溫85℃的操作環境下維持50Gbps(BER<1 × 10−7)的眼圖超過100 公尺傳輸品質維持不變。 850nm 波段方面,我們採用另一種消逝波(Anti waveguiding) VCSEL 的磊晶結構,透過這種特別的共振腔設計,使的元件在氧化區域的高階模態能夠有效抑制,進而有效提升垂直方向的光場強度,讓元件的模態能夠趨近單模。實驗結果3dB 頻響可以達到30GHz,且傳輸方面在常溫傳輸量可以達到60Gbps 的Back to back(B2B)傳輸。;In this work, we demonstrate 940 nm VCSELs with state-of-the-art dynamic performance. Record-high O-E bandwidths can be achieved under RT (40 GHz) and 85℃ (32 GHz) operation. The maximum intrinsic -3dB E-O bandwidths of these devices are obtained through the use of device modeling techniques and can be as high as 46.3 GHz. This number is close to the measured -3dB E-O bandwidth (40 GHz) and clearly indicates that the Zn-diffusion and oxide-relief techniques used in our VCSELs can effectively relax their RC-limited bandwidth. By using such devices as transmitters, 60 Gbit/sec error-free (BER < 1×10-12) back to back(B2B)transmission and invariant 50 Gbps transmission performance from RT to 85℃ over 100 meter OM5 fibers can be achieved. In the 850nm VCSEL case, we used advanced design concepts of the VCSELs,addressing both longitudinal and transverse optical modes. Applying an epitaxial structure having an anti–waveguiding cavity in the vertical direction leads to a strong suppression of parasitic in–plane optical modes, which supports a high modulation bandwidth. Using thin aperture layers located in the nodes of the longitudinal field of the lasing mode results in a strong suppression of high–order transverse modes and in single transverse mode lasing. We achieved the bandwidth reach to 30GHz, and B2B transmission at 60Gbps on room temperature.